Skip to main content
Log in

Studies on arsenic transforming groundwater bacteria and their role in arsenic release from subsurface sediment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Ten different Gram-negative arsenic (As)-resistant and As-transforming bacteria isolated from As-rich groundwater of West Bengal were characterized to assess their role in As mobilization. 16S rRNA gene analysis confirmed the affiliation of these bacteria to genera Achromobacter, Brevundimonas, Rhizobium, Ochrobactrum, and Pseudoxanthomonas. Along with superior As-resistance and As-transformation abilities, the isolates showed broad metabolic capacity in terms of utilizing a variety of electron donors and acceptors (including As) under aerobic and anaerobic conditions, respectively. Arsenic transformation studies performed under various conditions indicated highly efficient As3+ oxidation or As5+ reduction kinetics. Genes encoding As3+ oxidase (aioA), cytosolic As5+ reductase (arsC), and As3+ efflux pump (arsB and acr3) were detected within the test isolates. Sequence analyses suggested that As homeostasis genes (particularly arsC, arsB, and acr3) were acquired by most of the bacteria through horizontal gene transfer. A strong correlation between As resistance phenotype and the presence of As3+ transporter genes was observed. Microcosm study showed that bacterial strain having cytosolic As5+ reductase property could play important role in mobilizing As (as As3+) from subsurface sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achour AR, Bauda P, Billard P (2007) Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res Microbiol 28:128–137

    Article  Google Scholar 

  • Aminov RI (2009) The role of antibiotics and antibiotic resistance in nature. Environ Microbiol 11:2970–2988

    Article  CAS  Google Scholar 

  • Andres J et al (2013) Life in an arsenic-containing gold mine: genome and physiology of the autotrophic arsenite-oxidizing bacterium Rhizobium sp. NT-26. Genome Biol Evol 5:934–953

    Article  Google Scholar 

  • Bachate SP, Khapare RM, Kodam KM (2012) Oxidation of arsenite by two β-proteobacteria isolated from soil. Appl Microbiol Biotechnol 93:2136–2145

    Google Scholar 

  • Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    CAS  Google Scholar 

  • Branco R, Chung AP, Morais PV (2008) Sequencing and expression of two arsenic resistance operons with different functions in the highly arsenic-resistant strain Ochrobactrum tritici SCII24T. BMC Microbiol 8:95–104

    Article  Google Scholar 

  • Cai L, Liu G, Rensing C, Wang G (2009) Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol 9:4–13

    Article  Google Scholar 

  • Campos VL, León C, Mondaca MA, Yañez J, Zaror C (2011) Arsenic mobilization by epilithic bacterial communities associated with volcanic rocks from Camarones river, Atacama Desert, Northern Chile. Arch Environ Contam Toxicol 61:185–192

    Article  CAS  Google Scholar 

  • Cavalca L, Corsini A, Andreoni V, Muyzer G (2013) Microbial transformations of arsenic: perspective for biological removal of arsenic from water. Future Microbiol 8:753–768

    Article  CAS  Google Scholar 

  • Cavalca L, Zanchi R, Corsini A, Colombo M, Romagnoli C, Canzi E, Andreoni V (2010) Arsenic resistant bacteria associated with roots of the wild Cirsium arvense (L) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics. Syst Appl Microbiol 33:124–164

    Article  Google Scholar 

  • Davolos D, Pietrangeli B (2013) A molecular study on bacterial resistance to arsenic-toxicity in surface and underground waters of Latium. Ecotoxicol Environ Saf 96:1–9

    Article  CAS  Google Scholar 

  • Delavat F, Lett MC, Lièvremont D (2012) Novel and unexpected bacterial diversity in an arsenic-rich ecosystem revealed by culture-dependent approaches. Biol Direct 7:28–42

    Article  CAS  Google Scholar 

  • Dib AWJ, Motok J, Zenoff VF, Ordoñez O, Farías ME (2008) Occurrence of resistance to antibiotics, UV-B, and arsenic in bacteria isolated from extreme environments in high-altitude (above 4400 m). Curr Microbiol 56:510–517

    Article  CAS  Google Scholar 

  • Drewniak L, Dziewit L, Ciezkowska M, Gawor J, Gromadka R, Sklodowska A (2013) Structural and functional genomics of plasmid pSinA of Sinorhizobium sp. M14 encoding genes for the arsenite oxidation and arsenic resistance. J Bacteriol 164:479–488

    CAS  Google Scholar 

  • Drewniak L, Sklodowska A (2013) Arsenic-transforming microbes and their role in biomining processes. Environ Sci Pollut Res 20:7728–7739

    Article  CAS  Google Scholar 

  • Drewniak L, Styczek A, Lopatka MM, Sklodowska A (2008) Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution. Environ Pollut 26:1069–1074

    Article  Google Scholar 

  • Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E, Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (2007) The prokaryotes: a handbook on the biology of bacteria. In: Kersters K, De vos P, Gillis M, Swings J, Vandamme P, Stackebrandt E (eds) Introduction to the Proteobacteria, 3rd edn. Springer, New York, p 3

    Google Scholar 

  • Fan H, Su C, Wang Y, Yao J, Zhao K, Wang Y, Wang G (2008) Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, northwestern China. J Appl Microbiol 105:529–539

    Article  CAS  Google Scholar 

  • Fenchel T (2002) Microbial behavior in a heterogeneous world. Science 296:1068–1081

    Article  CAS  Google Scholar 

  • Fondi M, Rizzi E, Emiliani G, Orlandini V, Berna L, Papaleo MC, Perrin E, Maida I, Corti G, De Bellis G, Baldi F, Dijkshoorn L, Vaneechoutte M, Fani R (2013) The genome sequence of the hydrocarbon-degrading Acinetobacter venetianus VE-C3. Res Microbiol 165:439–449

    Article  Google Scholar 

  • Ghosh S, Sar P (2013) Identification and characterization of metabolic properties of bacterial populations recovered from arsenic contaminated ground water of North East India (Assam). Water Res 47:6992–7005

    Article  CAS  Google Scholar 

  • Gihring TM, Druschel GK, McCleskey RB, Hamers RJ, Banfield JF (2001) Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: field and laboratory investigations. Environ Sci Technol 6:3858–3862

    Google Scholar 

  • Hamamura N, Macur RE, Korf S, Ackerman GG, Taylor WP, Kozubal M, Reysenbach AL, Inskeep WP (2009) Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments. Environ Microbiol 11:421–431

  • Heinrich-Salmeron A, Cordi A, B-Armanet C, Halter D, Pagnout C, Abbaszadeh-F E, Montaut D, Seby F, Bertin PN, Bauda P, A-Ploetze F (2011) Unsuspected diversity of arsenite oxidizing bacteria as revealed by widespread distribution of the aoxB gene in prokaryotes. Appl Environ Microbiol 77:4685–4692

  • Hery M, Van Dongen BE, Gill F, Mondal D, Vaughan DJ, Pancost RD, Polya DA, Lloyd JR (2010) Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal. Geobiology 8:25–168

  • Huang Y, Li H, Rensing C, Zhao K, Johnstone L, Wang G (2012) Genome sequence of the facultative anaerobic arsenite-oxidizing and nitrate-reducing bacterium Acidovorax sp. strain NO1. J Bacteriol 194:1635–1636

    Article  CAS  Google Scholar 

  • Inskeep WP, Macur RE, Hamamura N, Warelow TP, Ward SA, Santini JM (2008) Detection, diversity and expression of aerobic bacterial arsenite oxidase genes. Environ Microbiol 9:934–943

    Article  Google Scholar 

  • Islam ABMR, Maity JP, Bundschuh J, Chen CY, Bhowmik BK, Tazaki K (2012) Arsenic mineral dissolution and possible mobilization in mineral–microbe–groundwater environment. J Hazard Mater 15:989–996

    Google Scholar 

  • Islam E, Sar P (2011) Culture-dependent and -independent molecular analysis of bacterial community within uranium ore. J Basic Microbiol 4:1–13

    Google Scholar 

  • Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 43:68–71

    Article  Google Scholar 

  • Jackson CR, Dugas SL (2003) Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase. BMC Evol Biol 3:18–28

    Article  Google Scholar 

  • Johnson DL (1971) Simultaneous determination of arsenate and phosphate in natural waters. Environ Sci Technol 5:411–421

    Article  CAS  Google Scholar 

  • Kazy SK, Sar P, Asthana RK, Singh SP (1999) Copper uptake and its compartmentalization in Pseudomonas aeruginosa strains: chemical nature of cellular metal. W J Microbiol Biotechnol 2:599–605

    Article  Google Scholar 

  • Kümmerer K (2009) Antibiotics in the aquatic environment—a review—part II. Chemosphere 75:435–441

    Article  Google Scholar 

  • Laverman AM, Switzer BJ, Schaefer JK, Philips EJP, Lovley DR, Oremland RS (1995) Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl Environ Microbiol 6:656–661

    Google Scholar 

  • Li H, Li M, Huang Y, Rensing C, Wang G (2013) In silico analysis of bacterial arsenic islands reveals remarkable synteny and functional relatedness between arsenate and phosphate. Front Microbiol 4:1–9

    Google Scholar 

  • Liao V-HC, Chu YJ, Su YC, Lin PC, Hwang YH, Liu CW, Liao CM, Chang FJ, Yu CW (2011) Assessing the mechanisms controlling the mobilization of arsenic in the arsenic contaminated shallow alluvial aquifer in the blackfoot disease endemic area. J Hazard Mater 198:398–403

    Google Scholar 

  • Macur RE, Jackson CR, Botero LM, Mcdermott TR, Inskeep WP (2004) Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environ Sci Technol 38:104–111

    Article  CAS  Google Scholar 

  • Mailloux BJ, Alexandrova E, Keimowitz AR, Wovkulich K, Freyer GA, Herron M, Stolz JF, Kenna TC, Pichler T, Polizzotto ML, Dong H, Bishop M, Knappett PSK (2009) Microbial mineral weathering for nutrient acquisition releases arsenic. Appl Environ Microbiol 75:2558–2565

    Article  CAS  Google Scholar 

  • Malasarn D, Saltikov CW, Campbell KM, Santini JM, Hering JG, Newman DK (2004) arrA is a reliable marker for As(V)-respiration in the environment. Science 306:455

    Article  CAS  Google Scholar 

  • Maria FVT, Oscar CRB, Camilo S, Martha JVF, Jenny D (2011) Horizontal arsC gene transfer among microorganisms isolated from arsenic polluted soil. Int Biodeterior Biodegrad 65:1–6

    Article  Google Scholar 

  • Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 4:311–325

    Article  Google Scholar 

  • Muller D, Lièvremont D, Simeonova DD, Hubert JC, Lett MC (2003) Arsenite oxidase aox genes from a metal-resistant betaproteobacterium. J Bacteriol 185:116–141

    Article  Google Scholar 

  • Niggemyer A, Spring S, Stackebrandt E, Rosenzweig RF (2001) Isolation and characterization of a novel As(v)-reducing bacterium: implications for arsenic mobilization and the genus Desulfitobacteria. Appl Environ Microbiol 67:5568–5580

    Article  CAS  Google Scholar 

  • Quéméneur M, Heinrich-Salmeron D, Muller D, Lièvremont D, Jauzein M, Bertin PN, Garrido F, Joulian C (2008) Diversity surveys and evolutionary relationships of aoxB genes in aerobic arsenite-oxidizing bacteria. Appl Environ Microbiol 74:4567–4573

  • Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–8

    CAS  Google Scholar 

  • Rosen BP (1999) Families of arsenic transporters. Trends Microbiol 7:207–212

    Article  CAS  Google Scholar 

  • Salmassi TM, Venkateswaren K, Satomi M, Nealson KH, Newman DK, Hering G (2002) Oxidation of arsenite by Agrobacterium albertimagni, AOL2, sp. nov., isolated from hot creek, California. Geomicrobiol J 19:53–66

    Article  CAS  Google Scholar 

  • Saltikov CW, Olson BH (2002) Homology of Escherichia coli R773 arsA, arsB, and arsC genes in arsenic-resistant bacteria isolated from raw sewage and arsenic-enriched creek waters. Appl Environ Microbiol 68:280–288

    Article  CAS  Google Scholar 

  • Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66:92–98

    Article  CAS  Google Scholar 

  • Sarkar A, Kazy SK, Sar P (2013) Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal. Ecotoxicology 22:363–374

    Article  CAS  Google Scholar 

  • Shakoori FR, Aziz I, Rehman A, Shakoori AR (2010) Isolation and characterization of arsenic reducing bacteria from industrial effluents and their potential use in bioremediation of wastewater. Pakistan J Zool 42:331–338

    CAS  Google Scholar 

  • Shivaji S, Suresh K, Chaturvedi P, Dube S, Sengupta S (2005) Bacillus arsenicus sp. nov., an arsenic-resistant bacterium isolated from a siderite concretion in West Bengal, India. Int J Syst Evol Microbiol 55:1123–1127

    Article  CAS  Google Scholar 

  • Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608

    Article  CAS  Google Scholar 

  • Simeonova DD, Lièvremont D, Lagarde F, Muller DA, Groudeva VI, Lett MC (2004) Microplate screening assay for the detection of arsenite-oxidizing and arsenate-reducing bacteria. FEMS Microbiol Lett 38:249–253

    Article  Google Scholar 

  • Slyemi D, Bonnefoy V (2011) How prokaryotes deal with arsenic. Microbiol Rep 1:16–24

    Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology, 2nd edn. American Society for Microbiology, Washington DC, pp 608–654

    Google Scholar 

  • Soge OO, Giardino MA, Ivanova IC, Pearson AL, Meschke JS, Roberts MC (2009) Low prevalence of antibiotic-resistant gram-negative bacteria isolated from rural south-western Ugandan groundwater. Water SA 35:343–347

    CAS  Google Scholar 

  • Sun Y, Polischuk EA, Radoja U, Cullen WR (2004) Identification and quantification of arsC genes in environmental samples by using real-time PCR. J Microbiol Methods 58:336–349

    Article  Google Scholar 

  • Sutton NB, van der Kraan GM, van Loosdrecht MC, Muyzer G, Bruining J, Schotting RJ (2009) Characterization of geochemical constituents and bacterial populations associated with As mobilization in deep and shallow tube wells in Bangladesh. Water Res 43:1820–1825

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2008) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:296–299

    Google Scholar 

  • Yamamura S, Yamashita M, Fujimoto N, Kuroda M, Kashiwa M, Sei K, Fujita M, Ike M (2007) Bacillus selenatarsenatis sp. nov., a selenate- and arsenate-reducing bacterium isolated from the effluent drain of a glass-manufacturing plant. Int J Syst Evol Microbiol 57:1060–1064

    Article  CAS  Google Scholar 

  • Zhang XX, Zhang T, Fang HHP (2009) Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol 82:397–414

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Department of Biotechnology (RGYI scheme) and Council of Scientific and Industrial Research (CSIR), Government of India. Kind help of Prof. Anindya Sarkar and Dr. Abhijit Mukherjee, Department of Geology, IIT Kharagpur in providing arsenic-bearing sand is greatly acknowledged. Angana Sarkar acknowledges IIT Kharagpur for her doctoral fellowship. The authors acknowledge the support extended by Mr. Buddha Deb Banerjee, Barasat, North 24 Parganas, West Bengal during field work. Authors express their thanks to the anonymous reviewer for critical comments in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinaki Sar.

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPTX 318 kb)

ESM 2

(PPT 138 kb)

ESM 3

(DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, A., Kazy, S.K. & Sar, P. Studies on arsenic transforming groundwater bacteria and their role in arsenic release from subsurface sediment. Environ Sci Pollut Res 21, 8645–8662 (2014). https://doi.org/10.1007/s11356-014-2759-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-2759-1

Keywords

Navigation