Skip to main content
Log in

AMF species improve yielding potential of Cd stressed pigeonpea plants by modulating sucrose-starch metabolism, nutrients acquisition and soil microbial enzymatic activities

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is one of the most perilous soil contaminants, restricting growth and yielding potential of crop plants. Arbuscular mycorrhizal fungi (AMF) can impart Cd stress tolerance by establishing a mutualistic relationship with host plants. However, selection of the most competent AMF species is required in order to attain maximum benefits. Therefore, the current study was designed to assess the efficacy of four AMF species; Rhizoglomus intraradices (R. int), Claroideoglomus etunicatum (C. etu), Claroideoglomus claroideum (C. cla) and Funneliformis mosseae (F. mos) in imparting tolerance to pigeonpea [Cajanus cajan (L.) Millsp.] plants under Cd (0, 25, 50 mg/kg) stress. Cd accretion hampered growth, nutrients uptake, sugar-starch metabolism and productivity of stressed plants. Mycorrhizal supplementations enhanced growth and yield by reducing Cd uptake and improving carbohydrate synthesis of stressed plants with maximum gains provided by + R. int, closely followed by + F. mos and + C. etu, and least by + C. cla. This could be accredited to their differential colonization (MC) capability (R. int, F. mos, C. etu, and C. cla with 69.85, 60.92, 58.48 and 50.36% respectively, under Cd50). Higher efficacy of R. int could be linked to maximum glomalin production as well as soil microbial enzyme activities [phosphatases-acidic, alkaline (PHAs), invertase (INV), glucosidase (BGA), protease (PRO)] which, boosted the bioavailability of nutrients (N, P, C) to the stressed plants. Thus, our study suggested that pigeonpea plants were responsive to all the four AMF species, with host-R. int symbiosis exhibiting the strongest potential in alleviating Cd stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adeyemi NO, Atayese MO, Sakariyawo OS, Azeez JO, Sobowale SP, Olubode A, Mudathir R, Adebayo R, Adeoye S (2021) Alleviation of heavy metal stress by arbuscular mycorrhizal symbiosis in Glycine max (L.) grown in copper, lead and zinc contaminated soils. Rhizosphere 18:100325

    Article  Google Scholar 

  • Adil MF, Sehar S, Han Z, Lwalaba JL, Jilani G, Zeng F, Chen ZH, Shamsi IH (2020) Zinc alleviates cadmium toxicity by modulating photosynthesis, ROS homeostasis, and cation flux kinetics in rice. Environ Pollut 265:114979

    Article  CAS  PubMed  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2019) Priority List of hazardous Substances. https://www.atsdr.cdc.gov/spl/index.html

  • Alguacil M, Díaz G, Torres P, Rodríguez-Caballero G, Roldán A (2019) Host identity and functional traits determine the community composition of the arbuscular mycorrhizal fungi in facultative epiphytic plant species. Fungal Ecol 39:307–315

    Article  Google Scholar 

  • Alves LR, Rossatto DR, Rossi ML, Martinelli AP, Gratão PL (2020) Selenium improves photosynthesis and induces ultrastructural changes but does not alleviate cadmium-stress damages in tomato plants. Protoplasma 257:597–605

    Article  CAS  PubMed  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Bao M, Wang LC, Khan I, Ullah E, Tung SA, Samad RA, Shahzad B (2015) Cadmium toxicity in Maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environ Sci Pollut Res 22:17022–17030

    Article  CAS  Google Scholar 

  • Aqeel M, Khalid N, Tufail A, Ahmad RZ, Akhter MS, Luqman M, Javed MT, Irshad MK, Alamri S, Hashem M (2021) Elucidating the distinct interactive impact of cadmium and nickel on growth, photosynthesis, metal-homeostasis, and yield responses of mung bean (Vigna radiata L.) varieties. Environ Sci Pollut Res 28:27376–27390

    Article  CAS  Google Scholar 

  • Araujo J, Díaz-Alcántara CA, Urbano B, González-Andrés F (2020) Inoculation with native Bradyrhizobium strains formulated with biochar as carrier improves the performance of pigeonpea (Cajanus cajan L.). Eur J Agron 113:125985

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts Polyphenoloxidase in Beta Vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahmani-Babanari L, Mirzahosseini Z, Shabani L, Sabzalian MR (2021) Effect of arbuscular mycorrhizal fungus, Funneliformis fasciculatum, on detoxification of Nickel and expression of TIP genes in Lolium perenne L. Biologia 76:1675–1683

    Article  CAS  Google Scholar 

  • Baier MC, Barsch A, Kuster H, Hohnjec N (2007) Antisense repression of the Medicago truncatula nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome. Plant Physiol 145:1600–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batta SK, Singh R (1986) Sucrose metabolism in sugar cane grown under varying climatic conditions: synthesis and storage of sucrose in relation of the activities of sucrose synthase, sucrose-phosphate synthase and invertase. Phytochemistry 25:2431–2437

    Article  CAS  Google Scholar 

  • Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10:1068

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernfeld P, Berkeley BJ, Bieber RE (1965) Reversible dissociation of enzymes at high dilutions and their inhibition by polyanions. Arch Biochem Biophys 111:31–38

    Article  CAS  PubMed  Google Scholar 

  • Bhalla S, Garg N (2021) Arbuscular mycorrhizae and silicon alleviate arsenic toxicity by enhancing soil nutrient availability, starch degradation and productivity in Cajanus cajan (L.) Millsp. Mycorrhiza 31:735–754

    Article  PubMed  Google Scholar 

  • Bisht A, Bhalla S, Kumar A, Kaur J, Garg N (2021) Gene expression analysis for selection and validation of suitable housekeeping gene (s) in cadmium exposed pigeonpea plants inoculated with arbuscular mycorrhizae. Plant Physiol Biochem 162:592–602

    Article  CAS  PubMed  Google Scholar 

  • Bitterlich M, Franken P, Graefe J (2018) Arbuscular mycorrhiza improves substrate hydraulic conductivity in the plant available moisture range under root growth exclusion. Front Plant Sci 9:11

    Article  Google Scholar 

  • Blee KA, Anderson AJ (2002) Transcripts for genes encoding soluble acid invertase and sucrose synthase accumulate in root tip and cortical cells containing mycorrhizal arbuscules. Plant Mol Biol 50:197–211

    Article  CAS  PubMed  Google Scholar 

  • Boldt K, Pörs Y, Haupt B, Bitterlich M, Kühn C, Grimm B, Franken P (2011) Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza. J Plant Physiol 168:1256–1263

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Breuillin-Sessoms F, Floss DS, Gomez SK, Pumplin N, Ding Y, Levesque-Tremblay V, Noar RD, Daniels DA, Bravo A, Eaglesham JB, Benedito VA (2015) Suppression of arbuscule degeneration in Medicago truncatula phosphate transporter4 mutants is dependent on the ammonium transporter 2 family protein AMT2; 3. Plant Cell 27:1352–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke DJ, Weintraub MN, Hewins CR, Kalisz S (2011) Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest. Soil Biol Biochem 43:795–803

    Article  CAS  Google Scholar 

  • Bush DS, Sticher L, van Huystee RB, Wagner D, Jones RL (1989) The calcium requirement for stability and enzymatic activity of two isoforms of barley aleurone α-amylase. J Biol Chem 264:19392–19398

    Article  CAS  PubMed  Google Scholar 

  • Campos-Soriano L, Segundo BS (2011) New insights into the signaling pathways controlling defense gene expression in rice roots during the arbuscular mycorrhizal symbiosis. Plant Signal Behav 6:553–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang JD, Huang S, Yamaji N, Zhang W, Ma JF, Zhao FJ (2020) OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice. Plant Cell Environ 43:2476–2491

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Nayuki K, Kuga Y, Zhang X, Wu S, Ohtomo R (2018) Uptake and intraradical immobilization of cadmium by arbuscular mycorrhizal fungi as revealed by a stable isotope tracer and synchrotron radiation μX-ray fluorescence analysis. Microbes Environ 33:257

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen XW, Wu L, Luo N, Hui C, Wong MH, Li H (2019) Arbuscular mycorrhizal fungi and the associated bacterial community influence the uptake of cadmium in rice. Geoderma 337:749–757

    Article  CAS  Google Scholar 

  • Chern ECW, Tsai DW, Gunseitan OA (2007) Deposition of glomalin related soil protein and sequestered toxic metals into watersheds. Environ Sci Technol 41:3566–3572

    Article  CAS  PubMed  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  PubMed  Google Scholar 

  • Corbin JD, Avis PG, Wilbur RB (2003) The role of phosphorus availability in response of soil nitrogen cycling, understorey vegetation and arbuscular mycorrhizal inoculums potential to elevated nitrogen inputs. Water Air Soil Pollut 147:141–161

    Article  CAS  Google Scholar 

  • Cui H, Zhou J, Zhao Q, Si Y, Mao J, Fang G, Liang J (2013) Fractions of Cu, Cd, and enzyme activities in a contaminated soil as affected by applications of micro- and nanohydroxyapatite. J Soils Sediments 13:742–752

    Article  CAS  Google Scholar 

  • de Mesquita CP, Martinez del Rio CM, Suding KN, Schmidt SK (2018) Rapid temporal changes in root colonization by arbuscular mycorrhizal fungi and fine root endophytes, not dark septate endophytes, track plant activity and environment in an alpine ecosystem. Mycorrhiza 28:717–726

    Article  Google Scholar 

  • Dubey RS, Singh AK (1999) Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolising enzymes in rice plants. Biol Plant 42:233–239

    Article  CAS  Google Scholar 

  • Eivazi F, Tabatabai MA (1988) Glucosidases and galactosidases in soils. Soil Biol Biochem 20:601–606

    Article  CAS  Google Scholar 

  • Fang L, Liu Y, Tian H, Chen H, Wang Y, Huang M (2017) Proper land use for heavy metal-polluted soil based on enzyme activity analysis around a Pb-Zn mine in Feng County, China. Environ Sci Pollut Res 24:28152–28164

    Article  CAS  Google Scholar 

  • FAOSTAT (2019) http://www.fao.org/faostat/en/#data/QC

  • Feng YX, Yu XZ, Mo CH, Lu CJ (2019) Regulation network of sucrose metabolism in response to trivalent and hexavalent chromium in Oryza sativa. J Agric Food Chem 67:9738–9748

    Article  CAS  PubMed  Google Scholar 

  • Gao MY, Chen XW, Huang WX, Wu L, Yu ZS, Xiang L, Mo CH, Li YW, Cai QY, Wong MH, Li H (2021) Cell wall modification induced by an arbuscular mycorrhizal fungus enhanced cadmium fixation in rice root. J Hazard Mater 416:125894

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Singh S (2018) Mycorrhizal inoculations and silicon fortifications improve rhizobial symbiosis, antioxidant defense, trehalose turnover in pigeon pea genotypes under cadmium and zinc stress. Plant Growth Regul 86:105–119

    Article  CAS  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Głowacka K, Źróbek-Sokolnik A, Okorski A, Najdzion J (2019) The effect of cadmium on the activity of stress-related enzymes and the ultrastructure of pea roots. Plants 8:413

    Article  PubMed Central  Google Scholar 

  • Guan SY, Zhang D, Zhang Z (1986) Soil enzyme and its research methods. Agric. Beijing 1986:274–297

    Google Scholar 

  • Guangming L, Xuechen Z, Xiuping W, Hongbo S, Jingsong Y, Xiangping W (2017) Soil enzymes as indicators of saline soil fertility under various soil amendments. Agr Ecosyst Environ 237:274–279

    Article  Google Scholar 

  • Gucwa-Przepióra E, Nadgórska-Socha A, Fojcik B, Chmura D (2016) Enzymatic activities and arbuscular mycorrhizal colonization of Plantago lanceolata and Plantago major in a soil root zone under heavy metal stress. Environ Sci Pollut Res 23:4742–4755

    Article  Google Scholar 

  • Guo L, Ding Y, Xu Y, Li Z, Jin Y, He K, Fang Y, Zhao H (2017) Responses of Landoltia punctata to cobalt and nickel: removal, growth, photosynthesis, antioxidant system and starch metabolism. Aquat Toxicol 190:87–93

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Thokchom SD, Kapoor R (2021) Arbuscular mycorrhiza improves photosynthesis and restores alteration in sugar metabolism in Triticum aestivum L. grown in arsenic contaminated soil. Front Plant Sci 12:640379–640389

    Article  PubMed  PubMed Central  Google Scholar 

  • Haider FU, Liqun C, Coulter JA et al (2021) Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicol Environ Saf 211:111887

    Article  CAS  PubMed  Google Scholar 

  • Hawker JS, Hatch MD (1965) Mechanism of sugar storage by mature stem tissue of sugar cane. Physiol Plant 18:444–453

    Article  Google Scholar 

  • Hiscox TD, Israelstam GF (1979) A method for extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Hohnjec N, Perlick AM, Puhler A, Kuster H (2003) The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi. Mol Plant-Microbe Interact 16:903–915

    Article  CAS  PubMed  Google Scholar 

  • Hristozkova M, Geneva M, Stancheva I, Iliev I, Azcón-Aguilar C (2017) Symbiotic association between golden berry (Physalis peruviana) and arbuscular mycorrhizal fungi in heavy metal-contaminated soil. J Plant Prot Res 57:173–184

    Article  CAS  Google Scholar 

  • Huang X, Wang L, Ma F (2017) Arbuscular mycorrhizal fungus modulates the phytotoxicity of Cd via combined responses of enzymes, thiolic compounds, and essential elements in the roots of Phragmites australis. Chemosphere 187:221–229

    Article  CAS  PubMed  Google Scholar 

  • Hussain MK, Aziz A, Ditta HM, Azhar MF, El-Shehawi AM, Hussain S, Mehboob N, Hussain M, Farooq S (2021) Foliar application of seed water extract of Nigella sativa improved maize growth in cadmium-contaminated soil. PLoS ONE 16:e0254602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingraffia R, Amato G, Frenda AS, Giambalvo D (2019) PLoS ONE 14:e0213672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irigoyen JJ, Einerich DW, Sanchez-Diaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plant 84:55–60

    Article  CAS  Google Scholar 

  • Jaiswal S, Dey R, Bag A (2021) Effect of heavy metal cadmium on cell proliferation and chromosomal integrity in Allium cepa. Natl Acad Sci Lett 1–3

  • Joner EJ, Leyval C (2001) Time-course of heavy metal uptake in maize and clover as affected by different mycorrhiza inoculation regimes. Biol Fertil Soil 33:351–357

    Article  CAS  Google Scholar 

  • Jones MGK, Outlaw WH, Lowry OH (1977) Enzymic assay of 10–7 to 10–14 moles of sucrose in plant tissues. Plant Physiol 60:379–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabir AH, Debnath T, Das U, Prity SA, Haque A, Rahman MM, Parvez MS (2020) Arbuscular mycorrhizal fungi alleviate Fe-deficiency symptoms in sunflower by increasing iron uptake and its availability along with antioxidant defense. Plant Physiol Biochem 150:254–262

    Article  CAS  PubMed  Google Scholar 

  • Kaur P, Bali S, Sharma A, Vig AP, Bhardwaj R (2017) Effect of earthworms on growth, photosynthetic efficiency and metal uptake in Brassica juncea L. plants grown in cadmium-polluted soils. Environ Sci Pollut Res 24:13452–13465

    Article  CAS  Google Scholar 

  • Khan KY, Ali B, Stoffella PJ, Cui X, Yang X, Guo Y (2020) Study amino acid contents, plant growth variables and cell ultrastructural changes induced by cadmium stress between two contrasting cadmium accumulating cultivars of Brassica rapa ssp. chinensis L. (pak choi). Ecotox Environ Saf 200:110748

    Article  CAS  Google Scholar 

  • Kobae Y, Tamura Y, Takai S, Banba M, Hata S (2010) Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant Cell Physiol 51:1411–1415

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy R, Kim CG, Subramanian P, Kim KY, Selvakumar G, Sa TM (2015) Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration. PLoS ONE 10:e0128784

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnaveni S, Balasubramanian T, Sadasivam S (1984) Sugar distribution in sweet stalk sorghum. Food Chem 15:229–232

    Article  CAS  Google Scholar 

  • Lanfranco L, Fiorilli V, Gutjahr C (2018) Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytol 220:1031–1046

    Article  PubMed  Google Scholar 

  • Leloir LF, Cardini CE (1953) The biosynthesis of sucrose. J Am Chem Soc 75:4118

    Article  Google Scholar 

  • Leport L, Turner NC, Dauies SL, Siddique KHM (2006) Variation in pod production and abortion among chickpea cultivars under terminal drought. Eur J Agron 24:236–246

    Article  Google Scholar 

  • Li T, Hu YJ, Hao ZP, Li H, Wang YS, Chen BD (2013) First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 197:617–630

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Zou W, Gao X, Wang X, Yu Q, Ge L (2019) Young seedlings adapt to stress by retaining starch and retarding growth through ABA-Dependent and-independent pathways in Arabidopsis. Biochem Biophys Res Commun 515:699–705

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Yang L, Li N, Zhou C, Feng H, Yang J (2020) Cadmium toxicity reduction in rice (Oryza sativa L.) through iron addition during primary reaction of photosynthesis. Ecotox Environ Saf 200:110746

    Article  CAS  Google Scholar 

  • Loix C, Huybrechts M, Vangronsveld J, Gielen M, Keunen E, Cuypers A (2017) Reciprocal Interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front Plant Sci 8:1867

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Pedrosa A, González-Guerrero M, Valderas A, Azcón-Aguilar C, Ferrol N (2006) GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus. Fungal Genet Biol 43:102–110

    Article  PubMed  Google Scholar 

  • Luna L, Miralles I, Andrenelli MC, Gispert M, Pellegrini S, Vignozzi N, Solé-Benet A (2016) Restoration techniques affect soil organic carbon, glomalin and aggregate stability in degraded soils of a semiarid Mediterranean region. CATENA 143:256–264

    Article  CAS  Google Scholar 

  • Ma X, Li X, Ludewig U (2021) Arbuscular mycorrhizal colonization outcompetes root hairs in maize under low phosphorus availability. Ann Bot Lond 127:155–166

    Article  CAS  Google Scholar 

  • MacNeill GJ, Mehrpouyan S, Minow MA, Patterson JA, Tetlow IJ, Emes MJ, Raines C (2017) Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. J Exp Bot 68:4433–4453

    Article  CAS  PubMed  Google Scholar 

  • Maherali H, Klironomos JN (2012) Phylogenetic and trait-based assembly of arbuscular mycorrhizal fungal communities. PLoS ONE 7:e36695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manck-Götzenberger J, Requena N (2016) Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Front Plant Sci 7:487

    Article  PubMed  PubMed Central  Google Scholar 

  • Marguí E, Hidalgoa M, Queraltb I (2007) XRF spectrometry for trace element analysis of vegetation samples. Spectrosc Eur 19:13–17

    Google Scholar 

  • McCready RM, Guggolz J, Silviera V, Owens HS (1950) Determination of starch and amylose in vegetables. Anal Chem 22:1156–1158

    Article  CAS  Google Scholar 

  • Meng X, Ai Y, Li R, Zhang W (2018) Effects of heavy metal pollution on enzyme activities in railway cut slope soils. Environ Monit Assess 190:1–12

    Article  CAS  Google Scholar 

  • Mensah JA, Koch AM, Antunes PM, Kiers ET, Hart M, Bucking H (2015) High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism. Mycorrhiza 25:533–546

    Article  CAS  PubMed  Google Scholar 

  • Mishra P, Dubey RS (2013) Excess nickel modulates activities of carbohydrate metabolizing enzymes and induces accumulation of sugars by upregulating acid invertase and sucrose synthase in rice seedlings. Biometals 26:97–111

    Article  CAS  PubMed  Google Scholar 

  • Mishra B, Sangwan NS (2019) Amelioration of cadmium stress in Withania somnifera by ROS management: active participation of primary and secondary metabolism. Plant Growth Regul 87:403–412

    Article  CAS  Google Scholar 

  • Nayuki K, Chen B, Ohtomo R, Kuga Y (2014) Cellular imaging of cadmium in resin sections of arbuscular mycorrhizas using synchrotron microX-ray fluorescence. Microbes Environ 29:60

    Article  PubMed  Google Scholar 

  • Noriega GO, Balestrasse KB, Batlle A, Tomaro ML (2007) Cadmium induced oxidative stress in soybean plants also by the accumulation of δ-aminolevulinic acid. Biometals 20:841–851

    Article  CAS  PubMed  Google Scholar 

  • Ohanenye IC, Sun X, Sarteshnizi RA, Udenigwe CC (2021) Germination alters the microstructure, in vitro protein digestibility, α-glucosidase and dipeptidyl peptidase-IV inhibitory activities of bioaccessible fraction of pigeon pea (Cajanus cajan) seeds. Legum Sci 3:e79

    Article  CAS  Google Scholar 

  • Ortíz J, Sanhueza C, Romero-Munar A, Hidalgo-Castellanos J, Castro C, Bascuñán-Godoy L, Coba de la Peña T, López-Gómez M, Florez-Sarasa I, Del-Saz NF (2020) In vivo metabolic regulation of alternative oxidase under nutrient deficiency-interaction with arbuscular mycorrhizal fungi and Rhizobium bacteria. Int J Mol Sci 21:4201

    Article  PubMed Central  Google Scholar 

  • Pérez-Tienda J, Testillano PS, Balestrini R, Fiorilli V, Azcón-Aguilar C, Ferrol N (2011) GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genet Biol 48:1044–1055

    Article  PubMed  Google Scholar 

  • Powell JR, Monaghan MT, Öpik M, Rillig MC (2011) Evolutionary criteria outperform operational approaches in producing ecologically relevant fungal species inventories. Mol Ecol 20:655–666

    Article  PubMed  Google Scholar 

  • Qin M, Zhang Q, Pan J, Jiang S, Liu Y, Bahadur A, Peng Z, Yang Y, Feng H (2020) Effect of arbuscular mycorrhizal fungi on soil enzyme activity is coupled with increased plant biomass. Eur J Soil Sci 71:84–92

    CAS  Google Scholar 

  • Rasouli-Sadaghiani MH, Barin M, Khodaverdiloo H, Moghaddam SS, Damalas CA, Kazemalilou S (2019) Arbuscular mycorrhizal fungi and rhizobacteria promote growth of russian knapweed (Acroptilon repens L.) in a Cd-contaminated soil. J Plant Growth Regul 38:113–121

    Article  CAS  Google Scholar 

  • Riaz M, Kamran M, Fang Y, Wang Q, Cao H, Yang G, Deng L, Wang Y, Zhou Y, Anastopoulos I, Wang X (2021) Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review. J Hazard Mater 14:123919

    Article  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Rohani N, Daneshmand F, Vaziri A, Mahmoudi M, Saber-Mahani F (2019) Growth and some physiological characteristics of Pistacia vera L. cv Ahmad Aghaei in response to cadmium stress and Glomus mosseae symbiosis. S Afr J Bot 124:499–507

    Article  CAS  Google Scholar 

  • Rosa M, Prado C, Chocobar-Ponce S, Pagano E, Prado F (2017) Effect of seasonality and Cr (VI) on starch-sucrose partitioning and related enzymes in floating leaves of Salvinia minima. Plant Physiol Biochem 118:1–10

    Article  CAS  PubMed  Google Scholar 

  • Samanta S, Singh A, Banerjee A, Roychoudhury A (2020) Exogenous supplementation of melatonin alters representative organic acids and enzymes of respiratory cycle as well as sugar metabolism during arsenic stress in two contrasting indica rice cultivars. J Biotech 324:220–232

    Article  CAS  Google Scholar 

  • Sambandan K, Kannan K, Raman N (1992) Distribution of vesicular-arbuscular mycorrhizal fungi in heavy metal polluted soils of Tamil Nadu, India. J Environ Biol 13:159–167

    CAS  Google Scholar 

  • Shah AA, Khan WU, Yasin NA, Akram W, Ahmad A, Abbas M, Ali A, Safdar MN (2020) Butanolide alleviated cadmium stress by improving plant growth, photosynthetic parameters and antioxidant defense system of Brassica oleracea. Chemosphere 261:127728

    Article  CAS  PubMed  Google Scholar 

  • Shahid MA, Balal RM, Khan N, Zotarelli L, Liu GD, Sarkhosh A, Fernández-Zapata JC, Martínez Nicolás JJ, Garcia-Sanchez F (2019) Selenium impedes cadmium and arsenic toxicity in potato by modulating carbohydrate and nitrogen metabolism. Ecotox Environ Saf 180:588–599

    Article  CAS  Google Scholar 

  • Shao YD, Zhang DJ, Hu XC, Wu QS, Jiang CJ, Xia TJ, Gao XB, Kuča K (2018) Mycorrhiza-induced changes in root growth and nutrient absorption of tea plants. Plant Soil Environ 64:283–289

    Article  CAS  Google Scholar 

  • Shiyu QI, Hongen LI, Zhaojun NI, Rengel Z, Wei GA, Chang LI, Peng ZH (2020) Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review. Pedosphere 30:168–180

    Article  Google Scholar 

  • Singh A, Roychoudhury A, Samanta S, Banerjee A (2020) Fluoride stress-mediated regulation of tricarboxylic acid cycle and sugar metabolism in rice seedlings in absence and presence of exogenous calcium. J Plant Growth Regul 40:1579–1593

    Article  Google Scholar 

  • Song X, Yue X, Chen W, Jiang H, Han Y, Li X (2019) Detection of cadmium risk to the photosynthetic performance of hybrid pennisetum. Front Plant Sci 10:798–805

    Article  PubMed  PubMed Central  Google Scholar 

  • Sönmez F, Gülser F (2014) Effects of arbuscular mycorrhizal fungus and salicylic acid on nutrient uptake by maize (Zea mays L.) seedlings in cadmium contaminated media. Int J Environ Sci 9:608

    Google Scholar 

  • Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307

    Article  CAS  Google Scholar 

  • Tian H, Drijber RA, Li X, Miller DN, Wienhold BJ (2013) Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.). Mycorrhiza 23:507–514

    Article  CAS  PubMed  Google Scholar 

  • Titus JH, Leps J (2000) The response of arbuscular mycorrhizae to fertilization, mowing, and removal of dominant species in a diverse oligotrophic wet meadow. Am J Bot 87:392–401

    Article  CAS  PubMed  Google Scholar 

  • Ulusu Y, Öztürk L, Elmastaş M (2017) Antioxidant capacity and cadmium accumulation in parsley seedlings exposed to cadmium stress. Russ J Plant Physiol 64:883–888

    Article  CAS  Google Scholar 

  • Ur Rahman S, Xuebin Q, Kamran M, Yasin G, Cheng H, Rehim A, Riaz L, Rizwan M, Ali S, Alsahli AA, Alyemeni MN (2021) Silicon elevated cadmium tolerance in wheat (Triticum aestivum L.) by endorsing nutrients uptake and antioxidative defense mechanisms in the leaves. Plant Physiol Biochem 166:148–159

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Penmetsa RV, Dutta S, Kulwal PL, Saxena RK, Datta S, Sharma TR, Rosen B, Carrasquilla-Garcia N, Farmer AD, Dubey A (2010) Pigeonpea genomics initiative (PGI): an international effort to improve crop productivity of pigeonpea (Cajanus cajan L.). Mol Breed 26:393–408

    Article  CAS  PubMed  Google Scholar 

  • Walder F, Boller T, Wiemken A, Courty PE (2016) Regulation of plants’ phosphate uptake in common mycorrhizal networks: role of intraradical fungal phosphate transporters. Plant Signal Behav 11:e1131372

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M, Zou J, Duan X (2007) Cadmium accumulation and its effects on metal uptake in maize (Zea Mays L.). Biores Technol 98:82–88

    Article  CAS  Google Scholar 

  • Wang P, Wang TY, Wu SH, Wen MX, Lu LM, Ke FZ, Wu QS (2019) Effect of arbuscular mycorrhizal fungi on rhizosphere organic acid content and microbial activity of trifoliate orange under different low P conditions. Arch Agron Soil Sci 65:2029–2042

    Article  CAS  Google Scholar 

  • Weatherley PE (1950) Studies in the water relations of cotton plant. I. The field measurement of water deficits in leaves. New Phytol 49:8197

    Article  Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107

    Article  CAS  Google Scholar 

  • Wu Z, McGrouther K, Huang J, Wu P, Wu W, Wang H (2014) Decomposition and the contribution of glomalin-related soil protein (GRSP) in heavy metal sequestration: field experiment. Soil Biol Biochem 68:283–290

    Article  CAS  Google Scholar 

  • Wu QS, Li Y, Zou YN, He XH (2015) Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels. Mycorrhiza 25:121–130

    Article  CAS  PubMed  Google Scholar 

  • Xue WX, Jiang Y, Shang XS, Zou JH (2020) Characterisation of early responses in lead accumulation and localization of Salix babylonica L. roots. BMC Plant Biol 20:296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang ZX, Liu SQ, Zheng DW, Feng SD (2006) Effects of cadmium, zinc and lead on soil enzyme activities. J Environ Sci 18:1135–1141

    Article  Google Scholar 

  • Yang Y, Han X, Liang Y, Ghosh A, Chen J, Tang M (2015) The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. PLoS ONE 10:e0145726

    Article  PubMed  PubMed Central  Google Scholar 

  • Zahoor R, Dong H, Abid M, Zhao W, Zhou WY (2017) Potassium fertilizer improves drought stress alleviation potential in cotton by enhancing photosynthesis and carbohydrate metabolism. Environ Exp Bot 137:73–83

    Article  CAS  Google Scholar 

  • Zaid A, Mohammad F, Fariduddin Q (2020) Plant growth regulators improve growth, photosynthesis, mineral nutrient and antioxidant system under cadmium stress in menthol mint (Mentha arvensis L.). Physiol Mol Biol Plants 26:25–39

    Article  CAS  PubMed  Google Scholar 

  • Zhan F, Li B, Jiang M, Yue X, He Y, Xia Y, Wang Y (2018) Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize. Environ Sci Pollut Res 25:24338–24347

    Article  CAS  Google Scholar 

  • Zhang H, Xu N, Li X, Long J, Sui X, Wu Y, Li J, Wang J, Zhong H, Sun GY (2018) Arbuscular mycorrhizal fungi (Glomus mosseae) improves growth, photosynthesis and protects photosystem II in leaves of Lolium perenne L. in cadmium contaminated soil. Front Plant Sci 9:1156

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Liu M, Li Y, Che Y, Xiao Y (2019) Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Sci Total Environ 655:1150–1158

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang H, Zhang Y, Liu Y, Zhang H, Tang M (2020) Arbuscular mycorrhizal fungi alter carbohydrate distribution and amino acid accumulation in Medicago truncatula under lead stress. Environ Exp Bot 171:103950

    Article  CAS  Google Scholar 

  • Zhu XC, Song FB, Liu SQ, Liu TD (2011) Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress. Plant Soil 346:189–199

    Article  CAS  Google Scholar 

  • Zou R, Wang L, Li YC, Tong Z, Huo W, Chi K, Fan H (2020) Cadmium absorption and translocation of amaranth (Amaranthus mangostanus L.) affected by iron deficiency. Environ Pollut 256:113410

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Pulse Laboratory and TERI, New Delhi, India for providing biological material for research and SAIF (Sophisticated Analytical Instrumentation Facility), Panjab University, Chandigarh for WD-XRF study.

Funding

We are thankful to Council of Scientific & Industrial Research (CSIR), New Delhi, India [09/135(0819)/2018-EMR-I] and Department of Biotechnology, Government of India [BT/PR13409/BPA/118/122/2015] for providing financial support in undertaking the present research work.

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author (NG) designed and monitored the research experiments. The first author (AB) performed the experiments under direct supervision and involvement of the corresponding author (NG). Both authors have contributed equally in preparation of manuscript.

Corresponding author

Correspondence to Neera Garg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Daolong Dou.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 402 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisht, A., Garg, N. AMF species improve yielding potential of Cd stressed pigeonpea plants by modulating sucrose-starch metabolism, nutrients acquisition and soil microbial enzymatic activities. Plant Growth Regul 96, 409–430 (2022). https://doi.org/10.1007/s10725-021-00791-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-021-00791-9

Keywords

Navigation