Skip to main content

Advertisement

Log in

Evaluation of B. subtilis SPB1 biosurfactants' potency for diesel-contaminated soil washing: optimization of oil desorption using Taguchi design

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Low solubility of certain hydrophobic soil contaminants limits remediation process. Surface-active compounds can improve the solubility and removal of hydrophobic compounds from contaminated soils and, consequently, their biodegradation. Hence, this paper aims to study desorption efficiency of oil from soil of SPB1 lipopeptide biosurfactant. The effect of different physicochemical parameters on desorption potency was assessed. Taguchi experimental design method was applied in order to enhance the desorption capacity and establish the best washing parameters. Mobilization potency was compared to those of chemical surfactants under the newly defined conditions. Better desorption capacity was obtained using 0.1 % biosurfacatnt solution and the mobilization potency shows great tolerance to acidic and alkaline pH values and salinity. Results show an optimum value of oil removal from diesel-contaminated soil of about 87 %. The optimum washing conditions for surfactant solution volume, biosurfactant concentration, agitation speed, temperature, and time were found to be 12 ml/g of soil, 0.1 % biosurfactant, 200 rpm, 30 °C, and 24 h, respectively. The obtained results were compared to those of SDS and Tween 80 at the optimal conditions described above, and the study reveals an effectiveness of SPB1 biosurfactant comparable to the reported chemical emulsifiers. (1) The obtained findings suggest (a) the competence of Bacillus subtilis biosurfactant in promoting diesel desorption from soil towards chemical surfactants and (b) the applicability of this method in decontaminating crude oil-contaminated soil and, therefore, improving bioavailability of hydrophobic compounds. (2) The obtained findings also suggest the adequacy of Taguchi design in promoting process efficiency. Our findings suggest that preoptimized desorption process using microbial-derived emulsifier can contribute significantly to enhancement of hydrophobic pollutants' bioavailability. This study can be complemented with the investigation of potential role in improving the biodegradation of the diesel adsorbed to the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abalos A, Vinas M, Sabate J, Manresa MA, Solanas AM (2004) Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by Pseudomonas aeruginosa AT10. Biodegradation 15:249–260

    Article  CAS  Google Scholar 

  • Abdul AA, Gibson TL (1991) Laboratory studies of surfactant-enhanced washing of biphenyl from sandy material. Environ Sci Technol 25(4):665–671

    Article  CAS  Google Scholar 

  • Abouseoud M, Amrane A, Yataghene EA, Maachi R (2010a) Effect of pH and salinity on the emulsifying and solubilizing capacity of a biosurfactant produced by Pseudomonas fluorescens. J Hazard Mater 180:131–136

    Article  CAS  Google Scholar 

  • Abouseoud M, Yataghene A, Amrane A, Maachi R (2010b) Production of a biosurfactant by Pseudomonas fluorescens—solubilizing and wetting capacity. Chem Eng Technol 20:291–296

    Google Scholar 

  • Bai G, Brusseau ML, Miller RM (1997) Biosurfactant-enhanced removal of residual hydrocarbon from soil. J Cont Hydrol 25:157–170

    Article  CAS  Google Scholar 

  • Bai G, Brusseau ML, Miller RM (1998) Influence of cation type, ionic strength, and pH on solubilization and mobilization of residual hydrocarbon by a biosurfactant. J Cont Hydrol 30:265–279

    Article  CAS  Google Scholar 

  • Batista RM, Rufino RD, Luna JM, Souza JEG, Sarubbo LA (2011) Effect of medium components on the production of biosurfactant from Candida tropicallis applied to the removal of hydrophobic contaminants in soil. Water Environ Res (in press)

  • Bordas F, Lafrance P (2001) Utilisation de biosurfactants (rhamnolipides) pour le traitement d'un sol sableux contaminé par le pyrène; Essais en colonnes de sol. Étude Gest Sols 8(3):181–188

    Google Scholar 

  • Bordoloi NK, Konwar BK (2009) Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons. J Hazard Mater 170:495–505

    Article  CAS  Google Scholar 

  • Cameotra SS, Singh P (2008) Bioremediation of oil sludge using crude biosurfactants. Int Biodeterior Biodegrad 62:274–280

    Article  CAS  Google Scholar 

  • Chang J-S, Radosevich M, Jin Y, Cha DK (2004) Enhancement of phenanthrene solubilization and biodegradation by trehalose lipid biosurfactants. Environ Toxicol Chem 23:2816–2822

    Article  Google Scholar 

  • Collins C (2007) Implementing phytoremediation of petroleum hydrocarbons, Methods in biotechnology 23:99-108. Humana Press, New York. ISBN 1-58829-541-9

    Google Scholar 

  • Dayeh VR, Chow SL, Schirmer K, Bols NC (2004) Evaluating the toxicity of Triton X-100 to protozoan, fish, and mammalian cells using fluorescent dyes as indicators of cell viability. Ecotoxicol Environ Saf 57:375–382

    Article  CAS  Google Scholar 

  • Franzetti A, Caredda P, Ruggeri C, La Colla P, Tamburini E, Papacchini M, Bestetti G (2009) Potential applications of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies. Chemosphere 75(6):801–807

    Article  CAS  Google Scholar 

  • Franzetti A, Gandolfi I, Bestetti G, Smyth TJP, Banat IM (2010) Production and applications of trehalose lipid biosurfactants. Eur J Lipid Sci Technol 112(6):617–627

    Article  CAS  Google Scholar 

  • Ghojavand H, Vahabzadeh F, Roayaei E, Shahraki AK (2008) Production and properties of a biosurfactant obtained from a member of the Bacillus subtilis group (PTCC 1696). J Colloid Inter Sci 324:172–176

    Article  CAS  Google Scholar 

  • Ghribi D, Abdelkefi L, Boukadi H, Elleuch M, Ellouze-Chaabouni S, Tounsi S (2011a) The impact of the Bacillus subtilis SPB1 biosurfactant on the midgut histology of Spodoptera littoralis (Lepidoptera: Noctuidae) and determination of its putative receptor. J Inver Pathol 109(2):183–186

    Article  Google Scholar 

  • Ghribi D, Abdelkefi-Mesrati L, Mnif I, Kammoun R, Ayadi I, Saadaoui I, Maktouf S, Chaabouni-Ellouze S (2012a) Investigation of antimicrobial activity and statistical optimization of Bacillus subtilis SPB1 biosurfactant production in solid-state fermentation. J Biomed Biotechnol. doi:10.1155/2012/373682

    Google Scholar 

  • Ghribi D, Elleuch M, Abdelkefi LM, Ellouze-Chaabouni S (2012b) Evaluation of larvicidal potency of Bacillus subtilis SPB1 biosurfactant against Ephestia kuehniella (Lepidoptera: Pyralidae) larvae and influence of abiotic factors on its insecticidal activity. J Stored Prod Res 48:68–72

    Article  CAS  Google Scholar 

  • Ghribi D, Elleuch M, Abdelkefi-Mesrati L, Boukedi H, Ellouze-Chaabouni S (2012c) Histopathological effects of Bacillus subtilis SPB1 biosurfactant in the midgut of Ephestia kuehniella (Lepidoptera: Pyralidae) and improvement of its insecticidal efficiency. J Plant Dis Protect 119(1):24–29

    CAS  Google Scholar 

  • Ghribi D, Ellouze-Chaabouni S (2011) Enhancement of Bacillus subtilis lipopeptide biosurfactants production through optimization of medium composition and adequate control of aeration. Biotechnol Res Int. doi:10.4061/2011/653654

    Google Scholar 

  • Ghribi D, Mnif I, Boukedi H, Radhouan K, Chaabouni-Ellouze S (2011b) Statistical optimization of medium components for economical production of Bacillus subtilis surfactin, a biocontrol agent for the olive moth Prays oleae. Afr J Microbiol Res 5(27):4927–4936

    Google Scholar 

  • Gong M, Wang J-D, Zhang J, Yang H, Lu X-F, Pei Y, Cheng J-Q (2006) Study of the antifungal ability of Bacillus subtilis strain PY-1 in vitro and identification of its antifungal substance (iturin A). Acta Biochim Biophys 38:233–240

    CAS  Google Scholar 

  • Han M, Ji G, Ni J (2009) Washing of field weathered crude oil contaminated soil with an environmentally compatible surfactant, alkyl polyglucoside. Chemosphere 76(5):579–586

    Article  CAS  Google Scholar 

  • Huesemann MH (1997) Incomplete hydrocarbon biodegradation in contaminated soils: limitations in bioavailability or inherent recalcitrance. Bioremed J 1(1):27–39

    Article  CAS  Google Scholar 

  • Huszcza E, Burczyk B (2003) Biosurfactant production by Bacillus coagulans. J Surfactant Deterg 6:61–64

    Article  CAS  Google Scholar 

  • Joshi S, Bharucha C, Desai AJ (2008) Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B. Biores Technol 99:4603–4608

    Article  CAS  Google Scholar 

  • Kalali A, Ebadi T, Rabbani A, Moghaddam SS (2011) Response surface methodology approach to the optimization of oil hydrocarbon polluted soil remediation using enhanced soil washing. Int J Environ Sci Technol 8(2):389–400

    Article  CAS  Google Scholar 

  • Kang SW, Kim YB, Shin JD, Kim EK (2010) Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, sophorolipid. Appl Biochem Biotechnol 160:780–790

    Article  CAS  Google Scholar 

  • Kuyukina MS, Ivshina IB (2010) Rhodococcus biosurfactants: biosynthesis, properties, and potential applications. In: Alvarez HM (ed) Biology of Rhodococcus. Springer, Berlin

    Google Scholar 

  • Kuyukina MS, Ivshina IB, Makarov SO, Litvinenko LV, Cunningham CJ, Philp JC (2005) Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Recent Ad Bioremed 31(2):155–161

    CAS  Google Scholar 

  • Lai C-C, Huang Y-C, Wei Y-H, Chang J-S (2009) Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J Hazard Mater 167(1–3):609–614

    Article  CAS  Google Scholar 

  • Liu H, Shi Z, Gao N, Sun Q (2008) Promotion of biosurfactants on washing of PCBs from contaminated soil. Abstr J Biotechnol 136:678–707

    Google Scholar 

  • Luna JM, Rufino RD, Albuquerque CDC, Sarubbo LA, Campos-Takaki GM (2011) Economic optimized medium for tensio-active agent production by Candida sphaerica UCP0995 and application in the removal of hydrophobic contaminant from sand. Int J Mol Sci 12:2463–2476

    Article  CAS  Google Scholar 

  • Luna JM, Sarubbo LA, Campos-Takaki GM (2009) A new biosurfactant produced by Candida glabrata UCP1002: characteristics of stability and application in oil recovery. Braz Arch Biol Technol 52:785–793

    Article  Google Scholar 

  • Mc-Cray JE, Bai G, Maier RM (2001) Biosurfactant-enhanced solubilization of NAPL mixtures. J Contam Hydrol 48:45–68

    Article  CAS  Google Scholar 

  • Michaud L, Lo Giudice A, Saitta M, De Domenico M, Bruni V (2004) The biodegradation efficiency on diesel oil by two psychrotrophic Antarctic marine bacteria during a two-month-long experiment. Mar Pollut Bull 49:405–409

    Article  CAS  Google Scholar 

  • Mnif I, Besbes S, Ellouze R, Ellouze-Chaabouni S, Ghribi D (2012c) Improvement of bread quality and bread shelf-life by Bacillus subtilis biosurfactant addition. Food Sci Biotechnol 21(4):1105–1112

    Google Scholar 

  • Mnif I, Besbes S, Ellouze-Ghorbel R, Ellouze-Chaabouni S, Ghribi D (2013a) Improvement of bread dough quality by Bacillus subtilis SPB1 biosurfactant addition: optimized extraction using response surface methodology. J Sci Food Agric. doi:10.1002/jsfa.6139

    Google Scholar 

  • Mnif I, Elleuch M, Ellouze Chaabouni S, Ghribi D (2013b) Bacillus subtilis SPB1 biosurfactant: production optimization and insecticidal activity against the carob moth Ectomyelois ceratoniae. Crop Prot 50:66–72

    Google Scholar 

  • Mnif I, Ellouze-Chaabouni S, Ghribi D (2012b) Response surface methodological approach to optimize the nutritional parameters for enhanced production of lipopeptide biosurfactant in submerged culture by B. subtilis SPB1. J Adv Scient Res 3(1):87–94

    CAS  Google Scholar 

  • Mnif I, Ellouze-Chaabouni S, Ghribi D (2012c) Economic production of Bacillus subtilis SPB1 biosurfactant using local agro-industrial wastes and its application in enhancing solubility of diesel. J Chem Technol Biotechnol 88(5):779–787

    Google Scholar 

  • Moran AC, Olivera N, Commendatore M, Esteves JL, Siñeriz F (2000) Enhancement of hydrocarbon waste biodegradation by addition of a biosurfactant from Bacillus subtilis O9. Biodegradation 11:65–71

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380

    Article  Google Scholar 

  • Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008) Biosurfactants: properties, commercial production and application. Curr Sci 94:736–747

    CAS  Google Scholar 

  • Olivera FL, Caron GR, Brandelli A (2004) Bacteriocin production by Bacillus licheniformis strain P40 in cheese whey using response surface methodology. Biochem Eng J 21:53–58

    Article  Google Scholar 

  • Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    Article  CAS  Google Scholar 

  • Pavlic Z, Cifrek ZV, Puntaric D (2005) Toxicity of surfactants to green microalgae Pseudokirchneriella subcapitata and Scenedesmus subspicatus and to marine diatoms Phaeodactylum tricornutum and Skeletonema costatum. Chemosphere 61:1061–1068

    Article  CAS  Google Scholar 

  • Peace Stuart G (1995) Taguchi methods, a hands-on approach to quality engineering. Addison-Wesley Publishing Company, Reading

  • Pennell KD, Jin M, Abriola LM, Pope GA (1994) Surfactant enhanced remediation of soil columns contaminated by residual tetrachloroethylene. J Contam Hydrol 16:35–53

    Article  CAS  Google Scholar 

  • Phadke MS (1989) Quality engineering using robust design. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Rahman KSM, Banat IM, Thahira J, Thayumanavan T, Lakshmanaperumalsamy P (2002) Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Biores Technol 81:25–32

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opi Biotech 13:249–252

    Article  CAS  Google Scholar 

  • Ross PJ (1987) Taguchi techniques for quality engineering. McGraw-Hill, New York, pp 123–124

    Google Scholar 

  • Sen R, Swaminathan T (1997) Application of response-surface methodology to evaluate the optimum environmental conditions for the enhanced production of surfactin. App Microbiol Biotechnol 47:358–363

    Article  CAS  Google Scholar 

  • Taguchi G (1987) System of experimental design, vol. 1. Quality Resources, New York, pp 108–115

    Google Scholar 

  • Taguchi G (1990) Introduction to quality engineering: designing quality into products and processes. Asian Productivity Organization, Tokyo

    Google Scholar 

  • Thimon L, Peypoux F, Michel G (1992) Interactions of surfactin, a biosurfactant from Bacillus subtilis with inorganic cations. Biotechnol Lett 14(8):713–718

    Article  CAS  Google Scholar 

  • Urum K, Grigson S, Pekdemir T, McMenamy S (2006) A comparison of the efficiency of different surfactants for removal of crude oil from contaminated soils. Chemosphere 62:1403–1410

    Article  CAS  Google Scholar 

  • Urum K, Pekdemir T (2004) Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere 57:1139–1150

    Article  CAS  Google Scholar 

  • Urum K, Pekdemir T, Gopur M (2003) Optimum conditions for washing of contaminated soil with biosurfactant solutions. Inst Chem Eng 81(3):203–209

    CAS  Google Scholar 

  • Vipulanandan C, Ren X (2000) Enhanced solubility and biodegradation of naphthalene with biosurfactant. J Environ Eng 7:629–634

    Article  Google Scholar 

  • Whang L-M, Liu P-WG, Ma C-C, Cheng S-S (2008) Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J Hazard Mater 151:155–163

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from the Tunisian Ministry of Higher Education, Scientific Research, and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhouha Ghribi.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mnif, I., Sahnoun, R., Ellouze-Chaabouni, S. et al. Evaluation of B. subtilis SPB1 biosurfactants' potency for diesel-contaminated soil washing: optimization of oil desorption using Taguchi design. Environ Sci Pollut Res 21, 851–861 (2014). https://doi.org/10.1007/s11356-013-1894-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1894-4

Keywords

Navigation