Skip to main content

Uptake of Antibiotics by Plants

  • Chapter
  • First Online:
Antibiotics and Antibiotics Resistance Genes in Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 51))

  • 2028 Accesses

Abstract

Antibiotics are bioactive substances that are given to human and animals for disease treatments. Antibiotics that are added to the feed of poultry, fattening livestock, and other meat-producing animals to promote growth and reduce illness are released in manure as the parent compound and/or their metabolites. When manure containing antibiotic residues is used as a plant fertilizer, it may become a potential risk for human, environment and consequently, they become available for plant uptake. Several researchers investigated this topic and argued about the common consumption of vegetables containing low levels of antibiotics may lead to the development of bacterial antibiotic resistance and plants are capable of spreading antibiotics from the soil into the food chain. Agriculture is only one source of antibiotics contamination among several other routes that poses risks to the environment and human health. The phytotoxicity of different classes of antibiotics varies in different soil types and plant species. This chapter provides an overview of antibiotics in soil-plant-system including the accumulation of antibiotics in different plants. As antibiotics are used in escalating quantities, there is a growing concern over the presence, toxicity, and fate of antibiotics in soil which may pose adverse effects on soil biology, crop yield, and quality of production.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-319-66260-2_22.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Accinelli C, Hashim M, Epifani R, Schneider RJ, Vicari A (2006) Effects of the antimicrobial agent sulfamethazine on metolachlor persistence and sorption in soil. Chemosphere 63:1539–1545

    Article  CAS  PubMed  Google Scholar 

  • Adomas B, Antczak-Marecka J, Nalecz-Jawecki G, Piotrowicz-Cieslak AI (2013) Phytotoxicity of enrofloxacin soil pollutant to narrow-leaved lupin plant. Pol J Environ Stud 22(1):71–76

    CAS  Google Scholar 

  • Aust MO, Godlinski F, Travis GR, Hao X, McAllister TA, Leinweber P, Thiele-Bruhn S (2008) Distribution of sulfamethazine, chlortetracycline and tylosin in manure and soil of Canadian feedlots after subtherapeutic use in cattle. Environ Pollut 156(3):1243–1251

    Article  CAS  PubMed  Google Scholar 

  • Baguer AJ, Jensen J, Krogh PH (2000) Effects of the antibiotics oxytetracycline and tylosin on soil fauna. Chemosphere 40:751–757

    Article  CAS  PubMed  Google Scholar 

  • Bao YY, Zhou QX, Xie XJ (2008) Influence of tetracycline kind antibiotics on the control of wheat germination and root elongation. China Environ Sci 6:024

    Google Scholar 

  • Barton MD (2014) Impact of antibiotic use in the swine industry. Curr Opin Microbiol 19:9–15

    Article  PubMed  Google Scholar 

  • Bassil R, Bashour I, Sleiman F, Abou-Jawdeh Y (2013) Antibiotic uptake by plants from manure-amended soils. J Environ Sci Health Part B 48(7):570–574

    Article  CAS  Google Scholar 

  • Beausse J (2004) Selected drugs in solid matrices: a review of environmental determination, occurrence and properties of principal substances. TrAC Trends Anal Chem 23(10):753–761

    Article  CAS  Google Scholar 

  • Boxall AB, Blackwell P, Cavallo R, Kay P, Tolls J (2002) The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicol Lett 131:19–28

    Article  CAS  PubMed  Google Scholar 

  • Boxall AB, Johnson P, Smith EJ, Sinclair CJ, Stutt E, Levy LS (2006) Uptake of veterinary medicines from soils into plants. J Agric Food Chem 54(6):2288–2297

    Article  CAS  PubMed  Google Scholar 

  • Capone DG, Weston DP, Miller V, Shoemaker C (1996) Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture. Aquaculture 145(1):55–75

    Article  CAS  Google Scholar 

  • Chee-Sanford JC, Mackie RI, Koike S, Krapac IG, Lin Y-F, Yannarell AC, Aminov RI (2009) Fate and transport of antibiotic residues and antibiotic resistance genes. Environ Qual 38:1086–1102

    Article  CAS  Google Scholar 

  • Choueiri M (2008) Emerging contaminants in Lebanon: antibiotic residues in cow manure and soil. Ms-Thesis, Department of Land and Water Resources. American University of Beirut, Beirut-Lebanon

    Google Scholar 

  • Christian T, Schneider RJ, Färber HA, Skutlarek D, Meyer MT, Goldbach HE (2003) Determination of antibiotic residues in manure, soil, and surface waters. Acta Hydrochimica et Hydrobiologica 31(1):36–44

    Article  CAS  Google Scholar 

  • Cui X, Qiao XL, Han CW, Wang Z (2008) Uptake of oxytetracycline and its phytotoxicity to lettuce. Agro Environ Sci 27(3):1038–1042

    CAS  Google Scholar 

  • De Liguoro M, Cibin V, Capolongo F, Halling-Sørensen B, Montesissa C (2003) Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil. Chemosphere 52(1):203–212

    Article  PubMed  Google Scholar 

  • Dolliver H, Kumar K, Gupta S (2007) Sulfamethazine uptake by plants from manure-amended soil. J Environ Qual 36(4):1224–1230

    Article  CAS  PubMed  Google Scholar 

  • Du L, Liu W (2012) Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agron Sustain Dev 32(2):309–327

    Article  CAS  Google Scholar 

  • Hamscher G, Sczesny S, Höper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74(7):1509–1518

    Article  CAS  PubMed  Google Scholar 

  • Hanselman BA, Kruth SA, Rousseau J, Low DE, Willey BM, McGeer A, Weese JS (2006) Methicillin-resistant Staphylococcus aureus colonization in veterinary personnel. Emerg Infect Dis 12(12):1933–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson KL, Coats JR (2010) Veterinary pharmaceuticals in the environment: an introduction, ACS symposium series. American Chemical Society, Washington, DC, pp 3–7

    Google Scholar 

  • Heuer H, Schmitt H, Smalla K (2011) Antibiotic resistance gene spread due to manure application on agricultural fields. Curr Opin Microbiol 14:236–243

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Zhou Q, Luo Y (2010) Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environ Pollut 158(9):2992–2998

    Article  CAS  PubMed  Google Scholar 

  • Huang C-H, Renew J, Smeby K, Pinkston K, Sedlak D (2011) Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis. J Contemp Water Res Educ 120(1):30–40

    Google Scholar 

  • Kang DH, Gupta S, Rosen C, Fritz V, Singh A, Chander Y, Rohwer C (2013) Antibiotic uptake by vegetable crops from manure-applied soils. J Agric Food Chem 61(42):9992–10001

    Article  CAS  PubMed  Google Scholar 

  • Karcı A, BalcıoÄŸlu IA (2009) Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Sci Total Environ 407(16):4652–4664. Elsevier

    Article  PubMed  Google Scholar 

  • Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic 8:1–13

    Article  CAS  Google Scholar 

  • Kim KR, Owens G, Kwon SI, So KH, Lee DB, Ok YS (2011) Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water Air Soil Pollut 214:163–172. Springer

    Article  CAS  Google Scholar 

  • Kohanski MA, Dwyer DJ, Collins JJ (2010) How antibiotics kill bacteria: from target to networks. Nat Rev Microbiol 8(6):423–435. National Institute of Health

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: a national reconnaissance. Environ Sci Technol 36(6):1202–1211

    Article  CAS  PubMed  Google Scholar 

  • Kong WD, Zhu YG, Liang YC, Zhang J, Smith FA, Yang M (2007) Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.) Environ Pollut 147(1):187–193

    Article  CAS  PubMed  Google Scholar 

  • Kulshrestha P, Giese JR, Diana S (2004) Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ Sci Technol 38(15):4097–4105

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Gupta SC, Chander Y, Singh AK (2005a) Antibiotic use in agriculture and its impact on the terrestrial environment. Adv Agron 87:1–54. Elsevier

    Article  CAS  Google Scholar 

  • Kumar K, Gupta SC, Baidoo SK, Chander Y, Rosen CJ (2005b) Antibiotic uptake by plants from soil fertilized with animal manure. J Environ Qual 34:2082–2085

    Article  CAS  PubMed  Google Scholar 

  • Kümmerer K (2004) Resistance in the environment. J Antimicrob Chemother 54(2):311–320

    Article  PubMed  Google Scholar 

  • Larsson DJ (2014) Antibiotics in the environment. Ups J Med Sci 119(2):108–112

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis HC, Mølbak K, Reese C, Aarestrup FM, Selchau M, Sørum M, Skov RL (2008). Pigs as Source of Methicillin-Resistant Staphylococcus aureus CC398 Infections in Humans, Denmark. Emerging Infectious Diseases 14(9):1383–1389

    Article  PubMed  PubMed Central  Google Scholar 

  • Levy SB, FitzGerald GB, Macone AB (1976) Changes in intestinal flora of farm personnel after introduction of a tetracycline-supplemented feed on a farm. N Engl J Med 295:583–588

    Article  CAS  PubMed  Google Scholar 

  • Li YX, Zhang XL, Li W, Lu XF, Liu B, Wang J (2013) The residues and environmental risks of multiple veterinary antibiotics in animal feces. Environ Monit Assess 185(3):2211–2220

    Article  CAS  PubMed  Google Scholar 

  • Lillenberg M, Litvin SV, Nei L, Roasto M, Sepp K (2010) Enrofloxacin and Ciprofloxacin Uptake by Plants from Soil. Agron Res 8(1):807–814

    Google Scholar 

  • Lin K, Gan J (2011) Sorption and degradation of wastewater-associated non-steroidal anti-inflammatory drugs and antibiotics in soils. Chemosphere 83(3):240–246

    Article  CAS  PubMed  Google Scholar 

  • Marshall BM, Levy SB (2011) Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev 24(4):718–733. American Society for Microbiology

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McEwen SA, Fedorka-Cray PJ (2002) Antimicrobial use and resistance in animals. Clin Infect Dis 34(suppl 3):S93–S106. Oxford Journals

    Article  CAS  PubMed  Google Scholar 

  • Michelini L, Reichel R, Werner W, Ghisi R, Thiele-Bruhn S (2012) Sulfadiazine uptake and effects on Salix fragilis L. and Zea mays L. plants. Water Air Soil Pollut 223(8):5243–5257

    Article  CAS  Google Scholar 

  • Migliore L, Cozzolino S, Fiori M (2003) Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere 52(7):1233–1244

    Article  CAS  PubMed  Google Scholar 

  • Myllyniemi AL, Rannikko R, Lindfors E, Niemi A, Bäckman C (2000) Microbiological and chemical detection of incurred penicillin G, oxytetracycline, enrofloxacin and ciprofloxacin residues in bovine and porcine tissues. Food Addit Contam 17(12):991–1000

    Article  CAS  PubMed  Google Scholar 

  • NAAS (2010) Antibiotics in manure and soil—a grave threat to human and animal health. National Academy of Agricultural Sciences, 1–20

    Google Scholar 

  • Patten DK, Wolf DC, Kunkle WE, Douglass LW (1980) Effect of antibiotics in beef cattle feces on nitrogen and carbon mineralization in soil and on plant growth and composition. J Environ Qual 9(1):167–172

    Article  CAS  Google Scholar 

  • Phillips I, Casewell M, Cox T, De Groot B, Friis C, Jones R, Nightingale C, Preston R, Waddell J (2004) Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother 53(1):28–52

    Article  CAS  PubMed  Google Scholar 

  • Price LB, Graham JP, Lackey LG, Roess A, Vailes R, Silbergeld E (2007) Elevated risk of carrying gentamicin-resistant Escherichia coli among US poultry workers. Environ Health Perspect 115(12):1738–1742

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabølle M, Spliid N (2000) Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 40(7):715–722

    Article  PubMed  Google Scholar 

  • Regassa TH, Koelsch RK, Wortmann CS, Randle RF, Abunyewa AA (2009) Antibiotic use in animal production: environmental concerns. University of Nebraska-Lincoln Extension RP196, pp 1–8. Retrieved from http://extensionpublications.unl.edu/assets/pdf/rp196.pdf

  • Sarmah AK, Meyer MT, Boxall AB (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65(5):725–759

    Article  CAS  PubMed  Google Scholar 

  • Shenker M, Harush D, Ben-Ari J, Chefetz B (2011) Uptake of carbamazepine by cucumber plants—a case study related to irrigation with reclaimed wastewater. Chemosphere 82(6):905–910

    Article  CAS  PubMed  Google Scholar 

  • Song W, Guo M (2014) Residual veterinary pharmaceuticals in animal manures and their environmental behavior in soils. In: He Z, Zhang H (eds) Applied manure and nutrient chemistry for sustainable agriculture and environment. Springer, Dordrecht, pp 24–46

    Google Scholar 

  • TerLaak TL, Gebbink WA (2006) Estimation of soil sorption coefficients of veterinary pharmaceuticals from soil properties. Environ Toxicol Chem 25(4):933–941

    Article  CAS  Google Scholar 

  • Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils—a review. J Plant Nutr Soil Sci 166:145–148

    Article  CAS  Google Scholar 

  • Thornton PK (2010) Livestock production: recent trends, future prospects. Philos Trans R Soc Lond B Biol Sci 365(1554):2853–2867

    Article  PubMed  PubMed Central  Google Scholar 

  • Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 35(17):3397–3406

    Article  CAS  PubMed  Google Scholar 

  • Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Laxminarayan R (2015) Global trends in antimicrobial use in food animals. PNAS 112(18):5649–5654

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M, Tang JC (2010) Research of antibiotics pollution in soil environments and its ecological toxicity. J Agro Environ Sci 29:261–266

    Google Scholar 

  • Wang Q, Yates SR (2008) Laboratory study of oxytetracycline degradation kinetics in animal manure and soil. J Agric Food Chem 56(5):1683–1688

    Article  CAS  PubMed  Google Scholar 

  • Warman PR, Thomas RL (1981) Chlortetracycline in soil amended with poultry manure. Can J Soil Sci 61(1):161–163

    Article  CAS  Google Scholar 

  • WHO (2000) Antimicrobial resistance: a global threat. Essential drugs monitor—WHO, pp 7–19. Retrieved from apps.who.int/medicinedocs/pdf/s2248e/s2248e.pdf

  • WHO (2011) Combat antimicrobial resistance. World Health Organization, Geneva. Retrieved from http://www.who.int/world-health-day/2011/en/

  • Winckler C, Grafe A (2001) Use of veterinary drugs in intensive animal production. J Soils Sediments 1(2):66

    Article  CAS  Google Scholar 

  • Xie XY, Zhang YQ, Li ZJ, Liang YC, Yao JH, Zhang SQ (2009) Cultivar differences in toxic effects of oxytetracycline on wheat (Triticum durum). Asian J Ecotoxicol 4(4):577–583

    Google Scholar 

  • Xu Q, Zhang M (2014) Oxytetracycline uptake and growth of radish plants (Raphanussativus L.) in animal manure-amended soils. Agric Sci Technol 15(7):1229–1234

    CAS  Google Scholar 

  • Youssef SA (2016) Uptake of gentamicin, tylosin, and oxytetracycline by lettuce and radish plants. MS-Thesis. Department of Agriculture, American University of Beirut, Beirut

    Google Scholar 

  • Zitnick KK, Shappell NW, Hakk H, DeSutter TM, Khan E, Casey FX (2011) Effects of liquid swine manure on dissipation of 17β-estradiol in soil. J Hazard Mater 186(2):1111–1117

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isam I. Bashour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Youssef, S.A., Bashour, I.I. (2017). Uptake of Antibiotics by Plants. In: Hashmi, M., Strezov, V., Varma, A. (eds) Antibiotics and Antibiotics Resistance Genes in Soils. Soil Biology, vol 51. Springer, Cham. https://doi.org/10.1007/978-3-319-66260-2_12

Download citation

Publish with us

Policies and ethics