Skip to main content
Log in

Phytoremediation potential of Arabidopsis thaliana, expressing ectopically a vacuolar proton pump, for the industrial waste phosphogypsum

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phosphogypsum (PG) is a by-product of the phosphorus–fertiliser industry and represents an environmental concern since it contains pollutants such as cadmium (Cd). We have recently shown that the overexpression of a proton pump gene (TaVP1) in transgenic tobacco (Nicotiana tabacum) led to an enhanced Cd tolerance and accumulation. The aim of this study was to evaluate the potential of transgenic Arabidopsis thaliana plants harbouring the TaVP1 gene to phytoremediate phosphogypsum. A pot experiment was carried out under greenhouse conditions. Transgenic A. thaliana plants harbouring the TaVP1 gene were grown on various substrates containing phosphogypsum (0, 25, 50 and 100 %) for 40 days. At the end of the growth period, we examined the growth (germination, root length, fresh weight) and physiological parameters (chlorophyll and protein contents, catalase activity and proteolysis) as well as the cadmium, Mg, Ca, and P contents of the A. thaliana plants. In order to evaluate Cd tolerance of the A. thaliana lines harbouring the TaVP1 gene, an in vitro experiment was also carried out. One week-old seedlings were transferred to Murashige and Skoog agar plates containing various concentrations of cadmium; the germination, total leaf area and root length were determined. The growth and physiological parameters of all A. thaliana plants were significantly altered by PG. The germination capacity, root growth and biomass production of wild-type (WT) plants were more severely inhibited by PG compared with the TaVP1 transgenic A. thaliana lines. In addition, TaVP1 transgenic A. thaliana plants maintained a higher antioxidant capacity than the WT. Interestingly, elemental analysis of leaf material derived from plants grown on PG revealed that the transgenic A. thaliana line accumulated up to ten times more Cd than WT. Despite its higher Cd content, the transgenic A. thaliana line performed better than the WT counterpart. In vitro evaluation of Cd tolerance showed that TaVP1 transgenic A. thaliana lines were more Cd-tolerant than the WT plants. These results suggested that ectopic expression of a vacuolar proton pump in A. thaliana plants can lead to various biotechnological applications including the phytoremediation of industrial wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aravind P, Prasad MNV (2003) Zn alleviates Cd induced oxidative stress in Ceratophyllum demersum L.: a free floating freshwater macrophyte. Plant Physiol Biochem 41:391–397

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Plant Physiol 24:1–15

    Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Berezin I, Mizrachy-Dagry T, Brook E, Mizrahi K, Elazar M, Zhuo S, Vered-Saul-Tcherkas V, Shaul O (2008) Overexpression of AtMHX in tobacco causes increased sensitivity to Mg2+, Zn2+, and Cd2+ ions, induction of V-ATPase expression, and a reduction in plant size. Plant Cell Rep 27:939–949

    Article  CAS  Google Scholar 

  • Bradford M (1996) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  Google Scholar 

  • Brini F, Hanin M, Mezghani I, Berkowitz GA, Masmoudi K (2007) Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58:301–308

    Article  CAS  Google Scholar 

  • Cho UH, Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120

    Article  CAS  Google Scholar 

  • Clemens S, Antosiewicz DM, Ward JM, Schachtman DP, Schroeder JI (1998) The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc Natl Acad Sci U S A 95:12043–12048

    Article  CAS  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333

    Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 129:967–973

    Google Scholar 

  • Enamorado S, Abril JM, Mas JL, Periáñez R, Polvillo O, Delgado A, Quintero JM (2009) Transfer of Cd, Pb, Ra and U from phosphogypsum amended soils to tomato plants. Water Air Soil Pollut 203:65–77

    Article  CAS  Google Scholar 

  • Gaxiola RA, Fink GR, Hirishi KD (2002) Genetic manipulation of vacuolar pumps and transporters. Plant Physiol 129:967–973

    Article  CAS  Google Scholar 

  • Gaxiola RA, Edwards M, Elser J (2011) A transgenic approach to enhance phosphorus use efficiency in crops as part of a comprehensive strategy for sustainable agriculture. Chemosphere 48:840–845

    Article  Google Scholar 

  • Ghnaya T, Slama I, Messedi D, Grignon C, Ghorbel MH, Abdelly C (2007) Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: consequences on growth. Chemosphere 67:72–79

    Article  CAS  Google Scholar 

  • Gouiaa S, Khoudi H, Leidi EO, Pardo JM, Masmoudi K (2012) Expression of wheat Na+/H+ antiporter TNHXS1 and H+-pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance. Plant Mol Biol 79:137–155

    Article  CAS  Google Scholar 

  • Guan ZQ, Chai TY, Zhang YX, Xu J, Wei W (2009) Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA. Chemosphere 76:623–630

    Article  CAS  Google Scholar 

  • Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133

    Google Scholar 

  • Juang KW, Ho PC, Yu CH (2012) Short-term effects of compost amendment on the fractionation of cadmium in soil and cadmium accumulation in rice plants. Environ Sci Pollut Res 19:1696–1708. doi:10.1007/s11356-011-0684-0

    Article  CAS  Google Scholar 

  • Khoudi H, Maatar Y, Gouiaa S, Masmoudi K (2012) Transgenic tobacco plants expressing ectopically wheat H+-pyrophosphatase (H+-PPase) gene TaVP1 show enhanced accumulation and tolerance to cadmium. J Plant Physiol 169:98–103

    Article  CAS  Google Scholar 

  • Korenkov V, Hirschi K, CrutchWeld JD, Wagner GJ (2007) Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L. Planta 226:1379–1387

    Article  CAS  Google Scholar 

  • Korenkov V, King B, Hirschi K, Wagner GJ (2009) Root-selective expression of AtCAX4 and AtCAX2 results in reduced lamina cadmium in field-grown Nicotiana tabacum L. Plant Biotechnol J 7:219–226

    Article  CAS  Google Scholar 

  • Krupa Z, Siedlecka A, Skorzynska-Polit E, Maksymiec W (2002) Heavy-metal interactions with plant nutrients. In: Prasad M, Strzałka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer Academic, Dordrecht, pp 287–301

    Google Scholar 

  • Li W, Khan MA, Yamaguchi S, Kamiya Y (2005) Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana. Plant Growth Regul 46:45–50

    Article  CAS  Google Scholar 

  • Li Z, Baldwin CM, Hu Q, Liu H, Luo H (2010) Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.). Plant Cell Environ 33:272–2892

    Article  CAS  Google Scholar 

  • Liu TY, Aung K, Tseng CY, Chang TY, Chen YS, Chiou TJ (2011) Vacuolar Ca2+/H+ transport activity is required for systemic phosphate homeostasis involving shoot-to-root signaling in Arabidopsis. Plant Physiol 156:1176–1189. doi:10.1104/pp.111.175257

    Article  CAS  Google Scholar 

  • Lück H (1965) Catalase. In: Bergmeyer HU (ed) Methods of enzyme analysis. Academic, New York, pp 895–897

    Chapter  Google Scholar 

  • Maeshima M (2000) Vacuolar H+-pyrophosphatase. Biochem Biophys Acta 77:10–17

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, San Diego

    Google Scholar 

  • Martinoia E, Maeshima M, Neuhausn HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58:83–102

    Article  CAS  Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  Google Scholar 

  • McKinney G (1941) Absorption of light by chlorophyll solution. Biol Chem 140:315–332

    Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25–37

    Article  CAS  Google Scholar 

  • Muhammad I, Puschenreiter M, Wenzel WW (2012) Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants. Sci Total Environ 1:416–490

    Google Scholar 

  • Munoz N, Gondalez C, Molina A, Zirulnik F, Luna C (2008) Cadmium-induced early changes in O ⋅−2 , H2O2 and antioxidative enzymes in soybean (Glycine max L.) leaves. Plant Growth Regul 56:159–166

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Google Scholar 

  • Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, Morris J, Hirschi KD, Gaxiola RA (2005) Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought resistant crop plants. Proc Natl Acad Sci U S A 102:18830–18835

    Article  CAS  Google Scholar 

  • Pena LB, Pasquini LA, Tomaro ML, Gallego SM (2006) Proteolytic system in sunflower (Helianthus annuus L.) leaves under cadmium stress. Plant Sci 171:531–537

    Article  CAS  Google Scholar 

  • Pena LB, Zawoznik MS, Tomaro ML, Gallego SM (2008) Heavy metals effects on proteolytic system in sunflower leaves. Chemosphere 72:741–746

    Article  CAS  Google Scholar 

  • Pinto AP, Mota AM, De Varennes A, Pinto FC (2004) Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Sci Total Environ 326:239–247

    Article  CAS  Google Scholar 

  • Polge C, Jaquinod M, Holzer F, Bourguignon J, Walling L, Brouquisse R (2009) Evidence for the existence in Arabidopsis thaliana of the proteasome proteolytic pathway activation in response to cadmium. J Biol Chem 284:35412–35424

    Article  CAS  Google Scholar 

  • Prasad MNV (1995) Cd toxicity and tolerance in vascular plants. Environ Exp Bot 35:525–545

    Article  CAS  Google Scholar 

  • Pulford I, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540

    Article  CAS  Google Scholar 

  • Rea PA, Li ZS, Lu YP, Drozdowicz YM, Martinoia E (1998) From vacuolar GS-X pumps to multispecific ABC transporters. Annu Rev Physiol Plant Mol Biol 49:727–760

    Article  CAS  Google Scholar 

  • Shigaki T, Hirschi KD (2006) Diverse functions and molecular properties emerging for CAX cation/H+ exchangers in plants. Plant Biol 8:419–429

    Article  CAS  Google Scholar 

  • Simova-Stoilova L, Vassileva V, Petrova T, Tsenov N, Demirevska K, Feller U (2006) Proteolytic activity in wheat leaves during drought stress and recovery. Gen Appl Plant Physiol 32:91–100

    Google Scholar 

  • Song WY, Sohn EJ, Martinoia E, Yong YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nature Biotechnol 8:914–919

    Google Scholar 

  • Succuro J, McDonald SS, Lu CR (2009) Phytoremediation: the wave of the future. In: Kirakosyan A, Kaufman PB (eds) Recent advances in plant biotechnology. Springer, New York, pp 119–135

    Chapter  Google Scholar 

  • Suzuki N (2005) Alleviation by calcium of cadmium induced root growth inhibition in Arabidopsis seedlings. Plant Biotechnol 22:19–25

    Article  CAS  Google Scholar 

  • van Assche F, Cardinaels C, Clijsters H (1988) Induction of enzyme capacity in plants as a result of heavy metal toxicity: dose response relation in Phaseolus vulgaris L., treated with zinc and cadmium. Environ Pollut 52:103–115

    Article  Google Scholar 

  • van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JAC (1999) Overexpression of a novel Arabidopsis gene related to putative zinc transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055

    Article  Google Scholar 

  • Wahid A, Arshad M, Farooq M (2009) Cadmium phytotoxicity: responses, mechanisms and mitigation strategies: a Review. In: Lichtfouse E (ed) Organic farming, pest control and remediation of soil pollutants, sustainable agriculture reviews. Springer, New York, pp 371–403

  • Wan G, Najeeb U, Jilani G, Naeem MS, Zhou W (2011) Calcium invigorates the cadmium-stressed Brassica napus L. plants by strengthening their photosynthetic system. Environ Sci Pollut Res 18:1478–1486

    Article  CAS  Google Scholar 

  • Wojas S, Hennig J, Plaza S, Geisler M, Siemianowski O, Sklodowska A, Ruszczynska A, Bulska E, Antosiewicz DM (2009) Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation. Environ Pollut 157:2781–2789

    Google Scholar 

  • Wojcik M, Tukiendore A (2005) Cd uptake, localization and detoxification in Zea mays. Biol Plant 49:237–244

    Article  CAS  Google Scholar 

  • Wu Q, Shigaki T, Williams KA, Han JS, Kim CK, Hirschi KD, Park S (2011) Expression of an Arabidopsis Ca2+/H+ antiporter CAX1 variant in Petunia enhances cadmium tolerance and accumulation. J Plant Physiol 168:167–173

    Article  CAS  Google Scholar 

  • Yang H, Knapp J, Koirala P, Rajagopal D, Peer WA, Silbart LK, Murphy A, Gaxiola RA (2007) Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H+-pyrophosphatase. Plant Biotechnol J 5:735–745

    Article  CAS  Google Scholar 

  • Ye ZH, Wong JC, Wong MH (2000) Vegetation response to lime and manure compost amendments on acid lead/zinc mine tailings: a greenhouse study. Restor Ecol 8:289–295

    Article  Google Scholar 

  • Zhao FY, Wang ZL, Zhang Q, Zhao YX, Zhang H (2006) Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H+ antiporter gene from Suaeda sala. J Plant Res 119:95–104

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from the Tunisian Ministry of Higher Education, Scientific Research and Technology and by the Groupe Chimique Tunisien (GCT) Research Center of Sfax. The authors wish to thank Mr. J. Azaza for technical assistance, Mr F. Khmiri from the GCT Center for help with chemical analysis and Mr. L. Khoudi, MA, for English proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Khoudi.

Additional information

Responsible editor: Markus Hecker

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoudi, H., Maatar, Y., Brini, F. et al. Phytoremediation potential of Arabidopsis thaliana, expressing ectopically a vacuolar proton pump, for the industrial waste phosphogypsum. Environ Sci Pollut Res 20, 270–280 (2013). https://doi.org/10.1007/s11356-012-1143-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-1143-2

Keywords

Navigation