Skip to main content

Phytoremediation: The Wave of the Future

  • Chapter
  • First Online:
Recent Advances in Plant Biotechnology

Abstract

As the industrial age developed, societies have allowed large amounts of contaminants to enter the environment unchecked. As a result of this neglect, the incidence of heavy-metal contaminated sites has been on the rise. These sites are polluted with toxic hydrocarbons and radionuclides, as well as heavy metals, such as cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn). The result is unsightly areas left untreated, undeveloped and are accurately referred to as “Brown Fields.” Heavy metals in the soil can create a contaminated and possibly toxic top layer ranging 2–5 cm deep in addition to the possibility of entering the food chain. The typical and most common method of removing contaminants is to excavate the soil by mechanical means and store it at off-site locations.

Phytoremediation is an innovative, emerging technology that utilizes plant species to remove contaminants from the environment using a distinct set of plant-based technologies. Four types of remediation technologies have been employed: (1) phytostabilization is the use of a plant’s root system to stabilize the metal-contaminated soil thus preventing the spread of the contaminant; (2) phytodegradation is the process of using plants to convert toxic contaminants into less toxic forms; (3) rhizofiltration is the process of using plants to clean aquatic environments; and finally, (4) phytoextraction is the practice of using plants to take up metals from the soil and translocate them to the above-ground tissues which can then be harvested. By utilizing phytoremediation techniques, the environmental disruption is minimized, soil fertility is maintained, secondary air- and water-borne wastes are reduced, and these techniques are well received by the public as in situ methods. This chapter will discuss the use of multiple plant species in each of the listed remediation techniques for the goal of rejuvenating Earth’s ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry. 2005. Casmalia Resources Superfund Site, Casmalia, Santa Barbara County, CA. EPA Facility ID CAD020748125. September 2005. www.atsdr.cdc.gov/HAC/PHA/CasmaliaResources/CasmaliaResources092805PHA.pdf

  • Agency for Toxic Substances and Disease Registry (ATSDR). 2007. Toxicological Profile for Lead (Update). US Department of Health and Human Services, Public Health Service, Atlanta, GA. www.atsdr.cdc.gov/tfacts13.html#bookmark07

  • Alloway, B. J. 1995. The origin of heavy metals in soils. In Heavy Metals in Soils, Alloway, B. J., Ed., 2nd ed., pp. 38–57. Blackie Academic and Professional, New York.

    Chapter  Google Scholar 

  • Amaya-Chavez, A., Martinez-Tabche, L., Lopez-Lopez, E., Galar-Martinez, M. 2006. Methyl parathion toxicity to and removal efficiency by Typha latifolia in water and artificial sediments. Chemosphere 63: 1124–1129.

    Article  PubMed  CAS  Google Scholar 

  • Baker, A. J. M., Reeves, R. D., Hajar, A. S. M. 1994. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytology 127: 61–68.

    Google Scholar 

  • Beckett, P. H. T., Davis, R. D. 1978. The additivity of the toxic effects of Cu, Ni and Zn in young barley. New Phytology 81: 155–173.

    Article  CAS  Google Scholar 

  • Berti, W. R., Cunningham, S. D. 2000. Phytostabilization of metals. In Phytoremediation of Toxic Metals – Using Plants to Clean Up the Environment, Raskin, I., Ensley, B. D., Eds., pp. 71–88. Wiley, New York.

    Google Scholar 

  • Blaylock, M., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., Ensley, B. D., Raskin, I. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science Technology 31: 860–865.

    Article  Google Scholar 

  • Borkert, C.M., Cox, F.R., Tucker, M., R. 1998. Zinc and copper toxicity in peanut, soybean, rice and corn in soil mixtures. Communications in Soil Science and Plant Analysis 29: 2991–3005.

    Google Scholar 

  • Bouchier, T. 2003. Pb distribution and ultrastructural changes induced by Pb and EDTA in shoot tissue of Brassica juncea (Indian mustard). Master’s Thesis, Humboldt State University.

    Google Scholar 

  • Bouchier, T., Lu, C. R. 2002. Cleaning by Greening. Creating a Sustainable Future; Living in Harmony with the Earth, pp. 354–364. Science Technology Publishing LLC, Houston, TX.

    Google Scholar 

  • Brookhaven National Laboratory. 2000. Technology fact sheet: Peconic River remedial alternatives, phytostabilization. Argonne National Laboratory, University of Chicago for the US Department of Energy, No. W-31-109-Eng-38.

    Google Scholar 

  • Brooks, R. R., Lee, J., Reeves, R. D., Jaffre, T. 1977. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration 7: 49–57.

    Article  CAS  Google Scholar 

  • Brown, S. L., Chaney, R. L., Angle, J. S., Baker, A. J. M. 1994. Phytoremediation potential of Thlaspi caerulescens and Bladder campion for zinc- and cadmium-contaminated soil. Journal of Environmental Quality 23: 1151–1157.

    Article  CAS  Google Scholar 

  • Brown, S. L., Chaney, R. L., Angle, J. S., Baker, A. J. M. 1995. Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Science Society American Journal 59: 125–133.

    Article  CAS  Google Scholar 

  • Chaineau, C. H., Morel, J. L., Oudot, J. 2000. Biodegradation of fuel oil hydrocarbons in the rhizosphere of maize. Journal of Environmental Quality 29: 569–578.

    Article  CAS  Google Scholar 

  • Cunningham, S. D., Berti, W. R. 2000. Phytoextraction and phytostabilization: technical, economic, and regulatory considerations of the soil-lead issue. In Phytoremediation of Contaminated Soil and Water. Terry, N., Banuelos, G., Eds., pp. 359–376. Lewis Publishers, New York.

    Google Scholar 

  • Cunningham, S. D., Berti, W. R., Huang, J. W. 1995. Phytoremediation of contaminated soils. TIBTECH 13: 393–397.

    Article  CAS  Google Scholar 

  • Doucette, W. J., Chard, J. K., Moore, B. J., Staudt, W. J., Headly, J. V. 2005. Uptake of sulfolane and diisopropanolamine (DIPA) by cattails (Typha latifolia). Microchemical Journal 81: 41–49.

    Article  CAS  Google Scholar 

  • Ebbs, S. D., Kochian, L. V. 1997. Toxicity of zinc and copper to Brassica species: implications for phytoremediation. Journal of Environmental Quality 26: 776–781.

    Article  CAS  Google Scholar 

  • Glick, B. R. 2003. Phytoremediation: synergic use of plants and bacteria to clean up the environment. Biotechnology Advances 21: 383–393.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, J. B., Shanks, J., Vanderford, M, Lauritzen, J., Bhadra, R. 1997. Transformation of TNT by aquatic plants and plant tissue cultures. Environmental Science & Technology 31: 266–271.

    Article  CAS  Google Scholar 

  • Kulshreshtha, A., Dixit, C. K., Kant, S., Verma, V., Kulshreshtha, A., Jain, K., Kumar, A. 2003. Evaluation of some air pollution tolerant plants in Agra City. Indian Journal of Environmental Protection 23(7): 805–808.

    CAS  Google Scholar 

  • Long, X. X., Yang, X. E., Ye, Z. Q., Ni, W. Z., Shi, W. Y. 2003. Difference of uptake and accumulation of zinc in four species of Sedum. Acta Botanica Sinica 44: 152–157.

    Google Scholar 

  • McDonald, S. 2006. Phytoremediation of lead-contaminated soil using Typha latifolia (Broadleaf Cattail). Master’s Thesis, Humboldt State University, Arcata, CA.

    Google Scholar 

  • McEldowney, S., Hardman, D. J., Waite, S. 1993. Treatment technologies. In Pollution, Ecology and Biotreatment. McEldowney, S., Hardman, D. J., Waite, S., Eds., pp. 48–58. Longman Singapore Publishers Pvt. Ltd, Singapore.

    Google Scholar 

  • Meagher, R. B. 2000. Phytoremediation of toxic elemental and organic pollutants. Current Opinion in Plant Biology 3: 153–162.

    Article  PubMed  CAS  Google Scholar 

  • Memon, A. R., Digdem, A., Aylin, O., Vertii, A. 2001. Heavy metal accumulation and detoxification mechanisms in plants. Turkish Journal of Botany 25(3): 111–121.

    Google Scholar 

  • Mueller, B., Rock, S., Tsao, D., Geller, K., Thuraisingham, R., Greene, K. A., Kornuc, J., Strauss, M., Coia, K., Hoddinott, L., Newman, B., Berti, T., Douglas, M., Lasat, D., Easley, P., Hall, T., Compton, H., Olson, K., Gatchett, A., Foote, E. 2001. Interstate Technology Regulatory Cooperation (ITRC): Technical/Regulatory Guidelines; Phytotechnology Technical and Regulatory Guidance Document (cited 2007 December 15). Available from: www.itrcweb.org/Documents/PHYTO-2.pdf

  • Outridge, P.M., Noller, B.N. 1991. Accumulation of toxic trace elements by freshwater vascular plants. Reviews of Environmental Contamination and Toxicology, 121: 1–63.

    Google Scholar 

  • Ow, D. W. 1996. Heavy metal tolerance genes: prospective tools for bioremediation. Resources, Conservation and Recycling 18: 135–149.

    Article  Google Scholar 

  • Padmavathiamma, P. K., Li, L. Y. 2007. Phytoremediation technology: hyper-accumulation metals in plants. Water, Air and Soil Pollution 184: 105–126.

    Article  CAS  Google Scholar 

  • Palmroth, M. R. T., Koskinen, P. E. P., Pichtel, J., Vaajasaari, K., Joutti, A., Tuhkanen, T. A., Puhakka, J. A. 2006. Field-scale assessment of phytotreatment of soil contaminated with weathered hydrocarbons and heavy metals. Journal of Soils and Sediments 6(3): 128–136.

    Article  CAS  Google Scholar 

  • Park, G. S., Kim, D. H., Lim, J. G., Ohga, S. 2006. Heavy metal concentration and identification of microorganisms in soil under roadside trees of Daejeon City, Korea. J. Fac. Agr., Kyushu Univ., Journal of the Faculty of Agriculture Kyushu University 51(1): 53–56.

    CAS  Google Scholar 

  • Pyatt, F. B., Gratten, J. P. 2001. Some consequences of ancient mining activities on the health of ancient and modern human populations. Journal of Public Medicine 23: 235–236.

    CAS  Google Scholar 

  • Sharma, P., Dubey, R. S. 2005. Lead toxicity in plants. Brazilian Journal of Plant Physiology 17: 35–52.

    Article  CAS  Google Scholar 

  • Sharma, S. C., Srivastava, R., Roy, R. K. 2005. Role of bougainvilleas in mitigation of environmental pollution. Journal of Environmental Science and Engineering 47(2): 131–134.

    PubMed  CAS  Google Scholar 

  • Tang, S., Fang, Y. 2001. Copper accumulation by Polygonum microcephalum D. Don and Rumex hastatus D. Don from copper mining spoils in Yunnan Province, P.R. China. Environmental Geology 40: 902–907.

    Article  CAS  Google Scholar 

  • Taylor, G. J., Crowder, A. A. 1983a. Uptake and accumulation of heavy metals by Typha latifolia in wetlands of the Sudbury, Ontario Region. Canadian Journal of Botany 61: 63–73.

    Article  CAS  Google Scholar 

  • Taylor, G. J., Crowder, A. A. 1983b. Uptake and accumulation of copper, nickel, and iron by Typha latifolia grown in solution culture. Canadian Journal of Botany 61: 1825–1830.

    Article  CAS  Google Scholar 

  • Tian, D., Xiang, W., Yan, W., Kang, W., Deng, X., Fan, Z. 2007. Biological cycles of mineral elements in a young mixed stand in abandoned mining soils. Journal of Integrative Plant Biology 49(9): 1284–1293.

    Article  CAS  Google Scholar 

  • USEPA. 1993. Cleaning up the nation’s waste sites: market and technology trends. Office of solid waste and emergency response, technology innovative office (OS-110 W), Washington, DC, EPA 542-R-92-012.

    Google Scholar 

  • USEPA. 1999. Phytoremediation Resources Guide. Solid waste and emergency response (5102G). EPA 542-B-99-003. www.epa.gov/tio/download/remed/phytoresgude.pdf

  • USEPA. 2007. www.epa.gov/iaq/lead.html

  • Xei, K., Waguespace, Y. Y., McPherson, G. 1999. The comparison of lead content of soil and plants in urban and rural areas. Unpublished report. Department of Natural Sciences, University of Maryland.

    Google Scholar 

  • Yang, X., Jin, X., Feng, Y., Islam, E. 2005. Molecular mechanisms and genetic basis of heavy metal tolerance/hyperaccumulation in plants. Journal of Integrative Plant Biology 47: 1025–1035.

    Article  CAS  Google Scholar 

  • Zhuang, X., Chen, J., Shim, H., Bai, Z. 2007a. New advances in plant growth-promoting rhizobacteria for bioremediation. Environmental International 33: 406–413.

    Article  Google Scholar 

  • Zhuang, P., Yang, Q. W., Wang, H. B., Shu, W. S. 2007b. Phytoextraction of heavy metals by eight plant species in the field. Water, Air and Soil Pollution 184: 235–242.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry S. Succuro .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Succuro, J.S., McDonald, S.S., Lu, C.R. (2009). Phytoremediation: The Wave of the Future. In: Recent Advances in Plant Biotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0194-1_7

Download citation

Publish with us

Policies and ethics