Skip to main content
Log in

Cyclic Strain Heterogeneity and Damage Formation in Rolled Magnesium Via In Situ Microscopic Image Correlation

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Inherently tied to the complexity of their deformation mechanisms, Magnesium alloys show a high propensity for strain localization at multiple length-scales. Understanding this aspect of Magnesium deformation is essential for enabling new-generation models that seek fidelity at the microstructural level. We present a comprehensive investigation of strain distributions over a cyclic load path in rolled Magnesium AZ31. Over the asymmetric stress-strain curve, the spatial structures that correspond to twin-, detwin- and plasticity-dominated deformation regimes are targeted, with an emphasis on their cyclic interactions. A robust in-situ implementation of digital image correlation with area-scanning optical microscopy is performed that entails a full bridging of grain and sample scales. This proves essential to uncover the pronounced long-range coordination of the strain patterns in this material. Over the compression-tension-compression cycle, two such patterns have dominant presence: (i) tensile-twin-driven (TTD) bands that are activated in compression and (ii) preferential plasticity in micro-texture bands, heavily realized in tension. Strain heterogeneity levels show a distinct asymmetry at the mid- and end points of the cycle. Both dominant patterns come to co-exist in the latter as a second-wave of TTD bands superpose over remnant strains in the micro-texture bands. The compactness of second-wave TTD bands is significantly reduced compared to the first wave. The strain distributions over the intergranular localization network that make up the TTD bands are characteristic and can be targeted by advanced models. The long-range inherited micro-texture elements have a strong impact on the meso-scale strain heterogeneity and they warrant careful consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.  3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. (Infinitesimal) rotation is not a native deformation measure and Ref. [42] details the caveats of its use in this role. Notably, any rigid body rotation (sample-scale or local, e.g., grain rotations) is superimposed on the targeted signal of the shear structures (e.g., note the rotation of the low-strain fields in Fig. 5a). Nevertheless, all strain maps are also provided, and their simultaneous inspection safeguards against any misinterpretation over the rotation maps.

  2. Of course, the spatial characteristics of the bands that come over the existing ones (e.g., in a case where the strain is further increased over the monotonic compression path toward the point that tensile twin gets exhausted [2]) poses a very interesting problem of spatial strain accommodation with ramifications on hardening. We state this as future work and note its higher technical difficulty regarding micro-DIC invalidations [42].

  3. The DIC strain resolution is reduced by 1–2 orders compared to the visual (pixel) resolution of an image. It hence takes an extended-field microscopic measurement to detail the strain in the micro-texture bands.

References

  1. Kleiner S, Uggowitzer PJ (2004) Mechanical anisotropy of extruded mg-6% Al-1% Zn alloy. Mater Sci Eng A 379:258–263. https://doi.org/10.1016/j.msea.2004.02.020

    Article  Google Scholar 

  2. Lou XY, Li M, Boger RK et al (2007) Hardening evolution of AZ31B mg sheet. Int J Plast 23:44–86. https://doi.org/10.1016/j.ijplas.2006.03.005

    Article  MATH  Google Scholar 

  3. Wu L, Agnew SR, Ren Y, Brown DW, Clausen B, Stoica GM, Wenk HR, Liaw PK (2010) The effects of texture and extension twinning on the low-cycle fatigue behavior of a rolled magnesium alloy, AZ31B. Mater Sci Eng A 527:7057–7067. https://doi.org/10.1016/j.msea.2010.07.047

    Article  Google Scholar 

  4. Hazeli K, Askari H, Cuadra J, Streller F, Carpick RW, Zbib HM, Kontsos A (2015) Microstructure-sensitive investigation of magnesium alloy fatigue. Int J Plast 68:55–76. https://doi.org/10.1016/j.ijplas.2014.10.010

    Article  Google Scholar 

  5. Wang YN, Huang JC (2003) Texture analysis in hexagonal materials. Mater Chem Phys 81:11–26. https://doi.org/10.1016/S0254-0584(03)00168-8

    Article  Google Scholar 

  6. Zhang J, Joshi SP (2012) Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium. J Mech Phys Solids 60:945–972. https://doi.org/10.1016/j.jmps.2012.01.005

    Article  Google Scholar 

  7. Oppedal AL, El Kadiri H, Tomé CN et al (2012) Effect of dislocation transmutation on modeling hardening mechanisms by twinning in magnesium. Int J Plast 30–31:41–61. https://doi.org/10.1016/j.ijplas.2011.09.002

    Article  Google Scholar 

  8. El Kadiri H, Barrett CD, Wang J, Tomé CN (2015) Why are {10-12} twins profuse in magnesium? Acta Mater 85:354–361. https://doi.org/10.1016/j.actamat.2014.11.033

    Article  Google Scholar 

  9. Wu L, Jain A, Brown DW, Stoica GM, Agnew SR, Clausen B, Fielden DE, Liaw PK (2008) Twinning–detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A. Acta Mater 56:688–695. https://doi.org/10.1016/j.actamat.2007.10.030

    Article  Google Scholar 

  10. Yin SM, Yang HJ, Li SX, Wu SD, Yang F (2008) Cyclic deformation behavior of as-extruded mg–3%Al–1%Zn. Scr Mater 58:751–754. https://doi.org/10.1016/j.scriptamat.2007.12.020

    Article  Google Scholar 

  11. Zhang J, Yu Q, Jiang Y, Li Q (2011) An experimental study of cyclic deformation of extruded AZ61A magnesium alloy. Int J Plast 27:768–787. https://doi.org/10.1016/j.ijplas.2010.09.004

    Article  MATH  Google Scholar 

  12. Wu L, Agnew SR, Brown DW, Stoica GM, Clausen B, Jain A, Fielden DE, Liaw PK (2008) Internal stress relaxation and load redistribution during the twinning–detwinning-dominated cyclic deformation of a wrought magnesium alloy, ZK60A. Acta Mater 56:3699–3707. https://doi.org/10.1016/j.actamat.2008.04.006

    Article  Google Scholar 

  13. Guillemer C, Clavel M, Cailletaud G (2011) Cyclic behavior of extruded magnesium: experimental, microstructural and numerical approach. Int J Plast 27:2068–2084. https://doi.org/10.1016/j.ijplas.2011.06.002

    Article  MATH  Google Scholar 

  14. Agnew SR, Tomé CN, Brown DW, Holden TM, Vogel SC (2003) Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling. Scr Mater 48:1003–1008. https://doi.org/10.1016/S1359-6462(02)00591-2

    Article  Google Scholar 

  15. Proust G, Tomé CN, Jain A, Agnew SR (2009) Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. Int J Plast 25:861–880. https://doi.org/10.1016/j.ijplas.2008.05.005

    Article  MATH  Google Scholar 

  16. Koike J (2005) Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline mg alloys at room temperature. Metall Mater Trans A 36:1689–1696. https://doi.org/10.1007/s11661-005-0032-4

    Article  Google Scholar 

  17. Vinogradov A, Orlov D, Danyuk A, Estrin Y (2015) Deformation mechanisms underlying tension–compression asymmetry in magnesium alloy ZK60 revealed by acoustic emission monitoring. Mater Sci Eng A 621:243–251. https://doi.org/10.1016/j.msea.2014.10.081

    Article  Google Scholar 

  18. Hama T, Suzuki T, Hatakeyama S, Fujimoto H, Takuda H (2018) Role of twinning on the stress and strain behaviors during reverse loading in rolled magnesium alloy sheets. Mater Sci Eng A 725:8–18. https://doi.org/10.1016/j.msea.2018.03.124

    Article  Google Scholar 

  19. Wang H, Wu PD, Wang J, Tomé CN (2013) A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms. Int J Plast 49:36–52. https://doi.org/10.1016/j.ijplas.2013.02.016

    Article  Google Scholar 

  20. Hama T, Kitamura N, Takuda H (2013) Effect of twinning and detwinning on inelastic behavior during unloading in a magnesium alloy sheet. Mater Sci Eng A 583:232–241. https://doi.org/10.1016/j.msea.2013.06.070

    Article  Google Scholar 

  21. Jain A, Duygulu O, Brown DW, Tomé CN, Agnew SR (2008) Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy, AZ31B, sheet. Mater Sci Eng A 486:545–555. https://doi.org/10.1016/j.msea.2007.09.069

    Article  Google Scholar 

  22. Hutchinson B, Jain J, Barnett MR (2012) A minimum parameter approach to crystal plasticity modelling. Acta Mater 60:5391–5398. https://doi.org/10.1016/j.actamat.2012.06.057

    Article  Google Scholar 

  23. Agnew SR, Brown DW, Tomé CN (2006) Validating a polycrystal model for the elastoplastic response of magnesium alloy AZ31 using in situ neutron diffraction. Acta Mater 54:4841–4852. https://doi.org/10.1016/j.actamat.2006.06.020

    Article  Google Scholar 

  24. Muránsky O, Carr DG, Barnett MR, Oliver EC, Šittner P (2008) Investigation of deformation mechanisms involved in the plasticity of AZ31 mg alloy: in situ neutron diffraction and EPSC modelling. Mater Sci Eng A 496:14–24. https://doi.org/10.1016/j.msea.2008.07.031

    Article  Google Scholar 

  25. Lee SY, Wang H, Gharghouri MA, Nayyeri G, Woo W, Shin E, Wu PD, Poole WJ, Wu W, An K (2014) Deformation behavior of solid-solution-strengthened mg–9 wt.% Al alloy: in situ neutron diffraction and elastic–viscoplastic self-consistent modeling. Acta Mater 73:139–148. https://doi.org/10.1016/j.actamat.2014.03.038

    Article  Google Scholar 

  26. Wu W, Qiao H, An K, Guo X, Wu P, Liaw PK (2014) Investigation of deformation dynamics in a wrought magnesium alloy. Int J Plast 62:105–120. https://doi.org/10.1016/j.ijplas.2014.07.005

    Article  Google Scholar 

  27. Wang H, Clausen B, Capolungo L, Beyerlein IJ, Wang J, Tomé CN (2016) Stress and strain relaxation in magnesium AZ31 rolled plate: in-situ neutron measurement and elastic viscoplastic polycrystal modeling. Int J Plast 79:275–292. https://doi.org/10.1016/j.ijplas.2015.07.004

    Article  Google Scholar 

  28. Qiao H, Agnew SR, Wu PD (2015) Modeling twinning and detwinning behavior of mg alloy ZK60A during monotonic and cyclic loading. Int J Plast 65:61–84. https://doi.org/10.1016/j.ijplas.2014.08.010

    Article  Google Scholar 

  29. Máthis K, Csiszár G, Čapek J, Gubicza J, Clausen B, Lukáš P, Vinogradov A, Agnew SR (2015) Effect of the loading mode on the evolution of the deformation mechanisms in randomly textured magnesium polycrystals – comparison of experimental and modeling results. Int J Plast 72:127–150. https://doi.org/10.1016/j.ijplas.2015.05.009

    Article  Google Scholar 

  30. Clausen B, Tomé CN, Brown DW, Agnew SR (2008) Reorientation and stress relaxation due to twinning: modeling and experimental characterization for mg. Acta Mater 56:2456–2468. https://doi.org/10.1016/j.actamat.2008.01.057

    Article  Google Scholar 

  31. Ando D, Koike J, Sutou Y (2010) Relationship between deformation twinning and surface step formation in AZ31 magnesium alloys. Acta Mater 58:4316–4324. https://doi.org/10.1016/j.actamat.2010.03.044

    Article  Google Scholar 

  32. Ando D, Koike J, Sutou Y (2014) The role of deformation twinning in the fracture behavior and mechanism of basal textured magnesium alloys. Mater Sci Eng A 600:145–152. https://doi.org/10.1016/j.msea.2014.02.010

    Article  Google Scholar 

  33. Sun DK, Chang CP (2014) Microstructural study of strain localization in a compressed mg-3Al-1Zn alloy. Mater Sci Eng A 603:30–36. https://doi.org/10.1016/j.msea.2014.02.072

    Article  Google Scholar 

  34. Martin G, Sinclair CW, Poole WJ, Azizi-Alizamini H (2015) Local plastic-strain heterogeneities and their impact on the ductility of mg. Jom 67:1761–1773. https://doi.org/10.1007/s11837-015-1449-x

    Article  Google Scholar 

  35. Koike J, Fujiyama N, Ando D, Sutou Y (2010) Roles of deformation twinning and dislocation slip in the fatigue failure mechanism of AZ31 mg alloys. Scr Mater 63:747–750. https://doi.org/10.1016/j.scriptamat.2010.03.021

    Article  Google Scholar 

  36. Lv F, Yang F, Duan QQ, Yang YS, Wu SD, Li SX, Zhang ZF (2011) Fatigue properties of rolled magnesium alloy (AZ31) sheet: influence of specimen orientation. Int J Fatigue 33:672–682. https://doi.org/10.1016/j.ijfatigue.2010.10.013

    Article  Google Scholar 

  37. Efstathiou C, Sehitoglu H, Lambros J (2010) Multiscale strain measurements of plastically deforming polycrystalline titanium: role of deformation heterogeneities. Int J Plast 26:93–106. https://doi.org/10.1016/j.ijplas.2009.04.006

    Article  MATH  Google Scholar 

  38. Kapan E, Shafaghi N, Ucar S, Aydıner CC (2017) Texture-dependent character of strain heterogeneity in magnesium AZ31 under reversed loading. Mater Sci Eng A 684:706–711. https://doi.org/10.1016/j.msea.2016.12.085

    Article  Google Scholar 

  39. Mo C, Kontsos A (2018) Twinning contributions to strain localizations in magnesium alloys. Mater Sci Eng A 722:206–215. https://doi.org/10.1016/j.msea.2018.03.024

    Article  Google Scholar 

  40. Hazeli K, Cuadra J, Vanniamparambil PAA, Kontsos A (2013) In situ identification of twin-related bands near yielding in a magnesium alloy. Scr Mater 68:83–86. https://doi.org/10.1016/j.scriptamat.2012.09.009

    Article  Google Scholar 

  41. Anten K, Scholtes B (2019) Formation of macroscopic twin bands and inhomogeneous deformation during cyclic tension-compression loading of the mg-wrought alloy AZ31. Mater Sci Eng A 746:217–228. https://doi.org/10.1016/j.msea.2019.01.033

    Article  Google Scholar 

  42. Aydıner CC, Telemez MA (2014) Multiscale deformation heterogeneity in twinning magnesium investigated with in situ image correlation. Int J Plast 56:203–218. https://doi.org/10.1016/j.ijplas.2013.12.001

    Article  Google Scholar 

  43. Üçel İB, Kapan E, Türkoğlu O, Aydıner CC (2019) In situ investigation of strain heterogeneity and microstructural shear bands in rolled magnesium AZ31. Int J Plast 118:233–251. https://doi.org/10.1016/j.ijplas.2019.02.008

    Article  Google Scholar 

  44. Orozco-Caballero A, Lunt D, Robson JDJD et al (2017) How magnesium accommodates local deformation incompatibility: a high-resolution digital image correlation study. Acta Mater 133:367–379. https://doi.org/10.1016/j.actamat.2017.05.040

    Article  Google Scholar 

  45. Chen Z, Daly S (2018) Deformation twin identification in magnesium through clustering and computer vision. Mater Sci Eng A 736:61–75. https://doi.org/10.1016/j.msea.2018.08.083

    Article  Google Scholar 

  46. Martin G, Sinclair CW, Schmitt J-H (2013) Plastic strain heterogeneities in an mg–1Zn–0.5Nd alloy. Scr Mater 68:695–698. https://doi.org/10.1016/j.scriptamat.2013.01.017

    Article  Google Scholar 

  47. Chen Z, Lenthe W, Stinville JC, Echlin M, Pollock TM, Daly S (2018) High-resolution deformation mapping across large fields of view using scanning Electron microscopy and digital image correlation. Exp Mech 58:1407–1421. https://doi.org/10.1007/s11340-018-0419-y

    Article  Google Scholar 

  48. Muránsky O, Barnett MR, Carr DG, Vogel SC, Oliver EC (2010) Investigation of deformation twinning in a fine-grained and coarse-grained ZM20 mg alloy: combined in situ neutron diffraction and acoustic emission. Acta Mater 58:1503–1517. https://doi.org/10.1016/j.actamat.2009.10.057

    Article  Google Scholar 

  49. Barnett MR, Stanford N (2007) Influence of microstructure on strain distribution in mg–3Al–1Zn. Scr Mater 57:1125–1128. https://doi.org/10.1016/J.SCRIPTAMAT.2007.08.023

    Article  Google Scholar 

  50. Sandlöbes S, Zaefferer S, Schestakow I, Yi S, Gonzalez-Martinez R (2011) On the role of non-basal deformation mechanisms for the ductility of mg and mg-Y alloys. Acta Mater 59:429–439. https://doi.org/10.1016/j.actamat.2010.08.031

    Article  Google Scholar 

  51. Wu YJ, Zhu R, Wang JT, Ji WQ (2010) Role of twinning and slip in cyclic deformation of extruded mg-3%Al-1%Zn alloys. Scr Mater 63:1077–1080. https://doi.org/10.1016/j.scriptamat.2010.08.008

    Article  Google Scholar 

  52. Wu W, Liaw PK, An K (2015) Unraveling cyclic deformation mechanisms of a rolled magnesium alloy using in situ neutron diffraction. Acta Mater 85:343–353. https://doi.org/10.1016/j.actamat.2014.11.030

    Article  Google Scholar 

  53. Park SH, Hong SG, Bang W, Lee CS (2010) Effect of anisotropy on the low-cycle fatigue behavior of rolled AZ31 magnesium alloy. Mater Sci Eng A 527:417–423. https://doi.org/10.1016/j.msea.2009.08.044

    Article  Google Scholar 

  54. Vendroux G, Knauss WG (1998) Submicron deformation field measurements: part 2. Improved digital image correlation. Exp Mech 38:86–92. https://doi.org/10.1007/BF02321649

    Article  Google Scholar 

  55. Wang Y, Xin Y, Yu H, Lv L, Liu Q (2015) Formation and microstructure of shear bands during hot rolling of a mg-6Zn-0.5Zr alloy plate with a basal texture. J Alloys Compd 644:147–154. https://doi.org/10.1016/j.jallcom.2015.04.155

    Article  Google Scholar 

  56. Yim CD, Seo YM, You BS (2009) Effect of the reduction ratio per pass on the microstructure of a hot-rolled AZ31 magnesium alloy sheet. Met Mater Int 15:683–688. https://doi.org/10.1007/s12540-009-0683-6

    Article  Google Scholar 

  57. Kaibyshev R (2012) Dynamic recrystallization in magnesium alloys. In: Beetles C, Barnett M (eds) Adv. Wrought Magnes. Alloy., first. Woodhead publishing, pp 186–225

  58. Bach FW, Rodman M, Rossberg A et al (2005) Macroscopic damage by the formation of shear bands during the rolling and deep drawing of magnesium sheets. JOM 57:57–61. https://doi.org/10.1007/s11837-005-0098-x

    Article  Google Scholar 

  59. Bohlen J, Nürnberg MR, Senn JW, Letzig D, Agnew SR (2007) The texture and anisotropy of magnesium–zinc–rare earth alloy sheets. Acta Mater 55:2101–2112. https://doi.org/10.1016/j.actamat.2006.11.013

    Article  Google Scholar 

  60. Barnett MR, Nave MD, Ghaderi A (2012) Yield point elongation due to twinning in a magnesium alloy. Acta Mater 60:1433–1443. https://doi.org/10.1016/j.actamat.2011.11.022

    Article  Google Scholar 

  61. Arul Kumar M, Kanjarla AK, Niezgoda SR, Lebensohn RA, Tomé CN (2015) Numerical study of the stress state of a deformation twin in magnesium. Acta Mater 84:349–358. https://doi.org/10.1016/j.actamat.2014.10.048

    Article  Google Scholar 

  62. Cheng J, Shen J, Mishra RK, Ghosh S (2018) Discrete twin evolution in mg alloys using a novel crystal plasticity finite element model. Acta Mater 149:142–153. https://doi.org/10.1016/j.actamat.2018.02.032

    Article  Google Scholar 

  63. Drozdenko D, Bohlen J, Yi S, Minárik P, Chmelík F, Dobroň P (2016) Investigating a twinning–detwinning process in wrought mg alloys by the acoustic emission technique. Acta Mater 110:103–113. https://doi.org/10.1016/j.actamat.2016.03.013

    Article  Google Scholar 

  64. Muránsky O, Barnett MR, Luzin V, Vogel S (2010) On the correlation between deformation twinning and Lüders-like deformation in an extruded mg alloy: in situ neutron diffraction and EPSC.4 modelling. Mater Sci Eng A 527:1383–1394. https://doi.org/10.1016/j.msea.2009.10.018

    Article  Google Scholar 

  65. Beyerlein IJ, Capolungo L, Marshall PE, McCabe RJ, Tomé CN (2010) Statistical analyses of deformation twinning in magnesium. Philos Mag 90:2161–2190. https://doi.org/10.1080/14786431003630835

    Article  Google Scholar 

  66. Beyerlein IJJ, McCabe RJJ, Tomé CNN (2011) Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: a multi-scale modeling study. J Mech Phys Solids 59:988–1003. https://doi.org/10.1016/j.jmps.2011.02.007

    Article  Google Scholar 

  67. Niezgoda SR, Kanjarla AK, Beyerlein IJ, Tomé CN (2014) Stochastic modeling of twin nucleation in polycrystals: An application in hexagonal close-packed metals. Int J Plast 56:119–138. https://doi.org/10.1016/j.ijplas.2013.11.005

    Article  Google Scholar 

  68. Graff S, Brocks W, Steglich D (2007) Yielding of magnesium: from single crystal to polycrystalline aggregates. Int J Plast 23:1957–1978. https://doi.org/10.1016/j.ijplas.2007.07.009

    Article  MATH  Google Scholar 

  69. Mareau C, Daymond MR (2016) Micromechanical modelling of twinning in polycrystalline materials: application to magnesium. Int J Plast 85:156–171. https://doi.org/10.1016/j.ijplas.2016.07.007

    Article  Google Scholar 

  70. Abdolvand H, Daymond MR (2013) Multi-scale modeling and experimental study of twin inception and propagation in hexagonal close-packed materials using a crystal plasticity finite element approach - part I: average behavior. J Mech Phys Solids 61:783–802. https://doi.org/10.1016/j.jmps.2012.10.013

    Article  MathSciNet  Google Scholar 

  71. Cheng J, Ghosh S (2017) Crystal plasticity finite element modeling of discrete twin evolution in polycrystalline magnesium. J Mech Phys Solids 99:512–538. https://doi.org/10.1016/j.jmps.2016.12.008

    Article  MathSciNet  Google Scholar 

  72. Vidyasagar A, Tutcuoglu AD, Kochmann DM (2018) Deformation patterning in finite-strain crystal plasticity by spectral homogenization with application to magnesium. Comput Methods Appl Mech Eng 335:584–609. https://doi.org/10.1016/j.cma.2018.03.003

    Article  MathSciNet  MATH  Google Scholar 

  73. Couling SLL, Pashak JFF, Sturkey L (1959) Unique deformation and aging characteristics of certain Magnesium-Base alloys. Trans Amer Soc Met 51:94–107

    Google Scholar 

  74. Ion SE, Humphreys FJ, White SH (1982) Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium. Acta Metall 30:1909–1919. https://doi.org/10.1016/0001-6160(82)90031-1

    Article  Google Scholar 

  75. Barnett MR (2009) The challenge of inhomogeneous deformation in mg and its alloys. Mater Sci Forum 618–619:227–232. https://doi.org/10.4028/www.scientific.net/MSF.618-619.227

    Article  Google Scholar 

  76. Echlin MP, Stinville JC, Miller VM et al (2016) Incipient slip and long range plastic strain localization in microtextured Ti-6Al-4V titanium. Acta Mater 114:164–175. https://doi.org/10.1016/j.actamat.2016.04.057

    Article  Google Scholar 

  77. Kasemer M, Echlin MP, Stinville JC et al (2017) On slip initiation in equiaxed α / β Ti-6Al-4V. Acta Mater 136:288–302. https://doi.org/10.1016/j.actamat.2017.06.059

    Article  Google Scholar 

  78. Abdolvand H, Daymond MR (2013) Multi-scale modeling and experimental study of twin inception and propagation in hexagonal close-packed materials using a crystal plasticity finite element approach; part II: local behavior. J Mech Phys Solids 61:803–818. https://doi.org/10.1016/j.jmps.2012.10.017

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and Technological Research Council of Turkey, TÜBİTAK, Grant No: 114M215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Aydıner.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix Automated selection of tensile-twin-driven band points

Appendix Automated selection of tensile-twin-driven band points

TTD band points are chosen on the basis of their higher strains compared to the dormant populations. An appropriate threshold is used to select the high strain skeleton of the band in the form of a binary (True/False) mask. To fill in the intermediate points of the band without expanding it, a binary closing operation (dilation followed by erosion) is performed with a disk-shaped structural element of 5 pixel radius. The entire procedure is calibrated against the FW-TTD band regions that can be hand-selected (Fig. 10c). It is, however, devised for SW-TTD bands that have a more irregular distribution (Fig. 7d). Note, due to the high-pass thresholding, the high-strain points are always selected. (The details of the morphological fill operation only pertain to the small-strain populations of the histograms, and that effect is also minor.)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafaghi, N., Kapan, E. & Aydıner, C.C. Cyclic Strain Heterogeneity and Damage Formation in Rolled Magnesium Via In Situ Microscopic Image Correlation. Exp Mech 60, 735–751 (2020). https://doi.org/10.1007/s11340-020-00612-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-020-00612-6

Keywords

Navigation