Skip to main content
Log in

An Indirect Experimental Measurement Method for Contact Length Identification in Non-conforming Frictionless Contact

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background: The non-conforming contact usually induce stress concentration as the interaction only occurs at a small interface. Theoretical and numerical investigations have shown that the contact stress distribution and maximum pressure are closely related to the length of the contact interface. Objective: Therefore, the characterization of the contact length is a key issue in studying the contact behavior and the corresponding structural safety. Methods: In this paper, we propose an indirect experimental identification approach that can reliably characterize the contact length between non-conforming frictionless surfaces. The relationship between the contact length and the local displacement is established based on the contact theory, and a modified digital image correlation method is implemented to acquire the displacement field near the contact area. The contact length is then identified with the established model and the measured displacement gradient through an identification algorithm, which can be easily calculated and does not require an optimization process. Results: Both simulations and experiments are performed to evaluate the precision and applicability of the proposed approach. The identification error maintains within a very low level during different load steps. Conclusions: The results indicate that the proposed method can accurately identify the contact length and has the ability to against the inevitable measurement inaccuracy of the displacement field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wen Z, Wu L, Li W, Jin X, Zhu M (2011) Three-dimensional elastic-plastic stress analysis of wheel-rail rolling contact. Wear 271(1):426–436. https://doi.org/10.1016/j.wear.2010.10.001

    Article  Google Scholar 

  2. Liu S, Wang Q (2000) A three-dimensional thermomechanical model of contact between non-conforming rough surfaces. J Tribol 123(1):17–26. https://doi.org/10.1115/1.1327585

    Article  Google Scholar 

  3. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Mao K (2007) Gear tooth contact analysis and its application in the reduction of fatigue wear. Wear 262 (11):1281–1288. https://doi.org/10.1016/j.wear.2006.06.019

    Article  Google Scholar 

  5. Chunjiang Z, Xiaokai Y, Qingxue H, Shidong G, Xin G (2015) Analysis on the load characteristics and coefficient of friction of angular contact ball bearing at high speed. Tribol Int 87:50–56. https://doi.org/10.1016/j.triboint.2015.02.012

    Article  Google Scholar 

  6. Xing W, Zhang J, Song C, Tin-Loi F (2019) A node-to-node scheme for three-dimensional contact problems using the scaled boundary finite element method. Comput Methods Appl Mech Eng 347:928–956. https://doi.org/10.1016/j.cma.2019.01.015

    Article  MathSciNet  MATH  Google Scholar 

  7. Güler M, Kucuksucu A, Yilmaz K, Yildirim B (2017) On the analytical and finite element solution of plane contact problem of a rigid cylindrical punch sliding over a functionally graded orthotropic medium. Int J Mech Sci 120:12–29. https://doi.org/10.1016/j.ijmecsci.2016.11.004

    Article  Google Scholar 

  8. Roswell A, Xi FJ, Liu G (2006) Modelling and analysis of contact stress for automated polishing. Int J Mach Tools Manuf 46(3):424–435. https://doi.org/10.1016/j.ijmachtools.2005.05.006

    Article  Google Scholar 

  9. Malits P (2011) Contact with stick zone between an indenter and a thin incompressible layer. Eur J Mech-A/Solid 30(6):884–892. https://doi.org/10.1016/j.euromechsol.2011.04.010

    Article  MathSciNet  MATH  Google Scholar 

  10. Johnson KL, Kendall K, Roberts AD, Tabor D (1971) Surface energy and the contact of elastic solids. Proc R Soc A Math Phys Sci 324(1558):301–313. https://doi.org/10.1098/rspa.1971.0141

    Article  Google Scholar 

  11. Derjaguin B, Muller V, Toporov Y (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53(2):314–326. https://doi.org/10.1016/0021-9797(75)90018-1

    Article  Google Scholar 

  12. Greenwood JA, Williamson JBP, Bowden FP (1966) Contact of nominally flat surfaces. Proc R Soc A Math Phys Sci 295(1442):300–319. https://doi.org/10.1098/rspa.1966.0242

    Article  Google Scholar 

  13. Hild P (2000) Numerical implementation of two nonconforming finite element methods for unilateral contact. Comput Methods Appl Mech Eng 184(1):99–123. https://doi.org/10.1016/S0045-7825(99)00096-1

    Article  MathSciNet  MATH  Google Scholar 

  14. Parsons B, Wilson EA (1970) A method for determining the surface contact stresses resulting from interference fits. J Manuf Sci Eng 92(1):208–218. https://doi.org/10.1115/1.3427710

    Article  Google Scholar 

  15. Zhang H, Xie Z, Chen B, Xing H (2012) A finite element model for 2d elastic-plastic contact analysis of multiple cosserat materials. Eur J Mech-A/Solid 31(1):139–151. https://doi.org/10.1016/j.euromechsol.2011.07.005

    Article  MathSciNet  MATH  Google Scholar 

  16. Robert F (2019) Prediction of contact length, contact pressure and indentation depth of au/carbon nanotube composite micro electrical contact using finite element modeling. Appl Surf Sci 489:470–476. https://doi.org/10.1016/j.apsusc.2019.05.169

    Article  Google Scholar 

  17. Rodríguez-Tembleque L, Buroni F, Abascal R, Sáez A (2011) 3D frictional contact of anisotropic solids using bem. Eur J Mech-A/Solid 30(2):95–104. https://doi.org/10.1016/j.euromechsol.2010.09.008

    Article  MathSciNet  MATH  Google Scholar 

  18. Li Q, Popov VL (2018) Boundary element method for normal non-adhesive and adhesive contacts of power-law graded elastic materials. Comput Mech 61(3):319–329. https://doi.org/10.1007/s00466-017-1461-9

    Article  MathSciNet  MATH  Google Scholar 

  19. Wu JJ, Lin YJ (2017) Boundary element analyses on the adhesive contact between an elastic sphere and a rigid half-space. Eng Anal Bound Elem 74:61–69. https://doi.org/10.1016/j.enganabound.2016.10.011

    Article  MathSciNet  MATH  Google Scholar 

  20. Li S (2007) Finite element analyses for contact strength and bending strength of a pair of spur gears with machining errors, assembly errors and tooth modifications. Mech Mach Theory 42(1):88–114. https://doi.org/10.1016/j.mechmachtheory.2006.01.009

    Article  MATH  Google Scholar 

  21. Patil SS, Karuppanan S, Atanasovska I, Wahab AA (2014) Contact stress analysis of helical gear pairs, including frictional coefficients. Int J Mech Sci 85:205–211. https://doi.org/10.1016/j.ijmecsci.2014.05.013

    Article  Google Scholar 

  22. Petrov EP, Ewins DJ (2005) Effects of damping and varying contact area at Blade-Disk joints in forced response analysis of bladed disk assemblies. J Turbomach 128(2):403–410. https://doi.org/10.1115/1.2181998

    Article  Google Scholar 

  23. Scheibert J, Prevost A, Debrégeas G, Katzav E, Adda-Bedia M (2009) Stress field at a sliding frictional contact: Experiments and calculations. J Mech Phys Solid 57(12):1921–1933. https://doi.org/10.1016/j.jmps.2009.08.008

    Article  MathSciNet  MATH  Google Scholar 

  24. Kane BJ, Cutkosky MR, Kovacs GTA (2000) A traction stress sensor array for use in high-resolution robotic tactile imaging. J Microelectromech Syst 9(4):425–434. https://doi.org/10.1109/84.896763

    Article  Google Scholar 

  25. Jones IA, Truman CE, Booker JD (2008) Photoelastic investigation of slippage in shrink-fit assemblies. Exp Mech 48(5):621–633. https://doi.org/10.1007/s11340-008-9140-6

    Article  Google Scholar 

  26. Khaleghian S, Emami A, Tehrani M, Soltani N (2013) Analysis of effective parameters for stress intensity factors in the contact problem between an asymmetric wedge and a half-plane using an experimental method of photoelasticity. Mater Des 43:447–453. https://doi.org/10.1016/j.matdes.2012.07.038

    Article  Google Scholar 

  27. Papadopoulos GA (2004) Experimental estimation of the load distribution in bearings by the method of caustics. Exp Mech 44(4):440–443. https://doi.org/10.1007/BF02428098

    Article  Google Scholar 

  28. Spitas V, Papadopoulos GA, Spitas C, Costopoulos T (2011) Experimental investigation of load sharing in multiple gear tooth contact using the stress-optical method of caustics. Strain 47(s1):e227–e233. https://doi.org/10.1111/j.1475-1305.2008.00558.x

    Article  Google Scholar 

  29. Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20(6):062001. https://doi.org/10.1088/0957-0233/20/6/062001

    Article  Google Scholar 

  30. Cai Y, Zhang Q, Yang S, Fu S, Wang Y (2016) Experimental study on three-dimensional deformation field of portevin–le chatelier effect using digital image correlation. Exp Mech 56(7):1243–1255. https://doi.org/10.1007/s11340-016-0138-1

    Article  Google Scholar 

  31. Yang L, Xie X, Zhu L, Wu S, Wang Y (2014) Review of electronic speckle pattern interferometry (espi) for three dimensional displacement measurement. Chin J Mech Eng 27(1):1–13. https://doi.org/10.3901/CJME.2014.01.001

    Article  Google Scholar 

  32. Badulescu C, Grédiac M, Mathias JD (2009) Investigation of the grid method for accurate in-plane strain measurement. Meas Sci Technol 20(9):095102. https://doi.org/10.1088/0957-0233/20/9/095102

    Article  Google Scholar 

  33. Passieux JC, Bugarin F, David C, Périé JN, Robert L (2015) Multiscale displacement field measurement using digital image correlation: Application to the identification of elastic properties. Exp Mecha 55 (1):121–137. https://doi.org/10.1007/s11340-014-9872-4

    Article  Google Scholar 

  34. Chalal H, Avril S, Pierron F, Meraghni F (2006) Experimental identification of a nonlinear model for composites using the grid technique coupled to the virtual fields method. Compos Part A Appl Sci Manuf 37 (2):315–325. https://doi.org/10.1016/j.compositesa.2005.04.020

    Article  Google Scholar 

  35. Mathieu F, Hild F, Roux S (2012) Identification of a crack propagation law by digital image correlation. Int J Fatigue 36(1):146–154. https://doi.org/10.1016/j.ijfatigue.2011.08.004

    Article  Google Scholar 

  36. Sun C, Zhou Y, Chen J, Miao H (2015) Measurement of deformation close to contact interface using digital image correlation and image segmentation. Exp Mech 55(8):1525–1536. https://doi.org/10.1007/s11340-015-0055-8

    Article  Google Scholar 

  37. Pan B, Asundi A, Xie H, Gao J (2009) Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements. Opt Lasers Eng 47(7):865–874. https://doi.org/10.1016/j.optlaseng.2008.10.014

    Article  Google Scholar 

  38. Zhu H, He Z, Zhao Y, Ma S (2017) Experimental verification of yield strength of polymeric line contact structures. Polym Test 63:118–125

    Article  Google Scholar 

Download references

Acknowledgements

This research work was supported by the National Natural Science Foundation of China, Grant Nos. 11902196 and 11732009, the supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Sun or J. Chen.

Ethics declarations

Conflict of Interests

The authors declare that they have no potential conflicts of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Q., Gong, Y., Sun, C. et al. An Indirect Experimental Measurement Method for Contact Length Identification in Non-conforming Frictionless Contact. Exp Mech 60, 801–813 (2020). https://doi.org/10.1007/s11340-020-00600-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-020-00600-w

Keywords

Navigation