Skip to main content
Log in

Multiscale Displacement Field Measurement Using Digital Image Correlation: Application to the Identification of Elastic Properties

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

As any Digital Image Correlation (DIC) method, Finite-Element (FE) based DIC methods lead to uncertainties which are related to the spatial resolution (in pixel/element). To overcome the tricky and well-known compromise between spatial resolution and uncertainty, a multiscale approach to FE-DIC is proposed. Additional nearfield images are used to improve locally the resolution of the measurement for a given measurement mesh. An automatic and accurate estimation of the nearfield/farfield transformation is obtained by a dedicated DIC based method, in order to bridge precisely the measurement performed at both scales. This multiscale measurement is then associated to a multiscale Finite Element Model Updating (FEMU) identification technique. After being validated on synthetic test cases, the method is applied to a tensile test carried out on an open-hole specimen made of glass/epoxy laminate. The four in-plane orthotropic elastic parameters are identified at different levels of loading. Results show that the multiscale approach greatly improves the uncertainty of both the measured displacements and the identified material parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Grédiac M, Hild F (eds) (2012) Full-field measurements and identification in solid mechanics. Wiley. ISBN:9781848212947

  2. Sutton M, Orteu JJ, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New York

    Google Scholar 

  3. DIN EN ISO 527-4 (1997) Determination of the tensile properties of plastics, moulded materials, extruded materials and fibre reinforced plastic laminates

  4. ASTM D3039-00 (2000) Standard test method for tensile properties of polymer matrix composite materials, vol 15

  5. Meurs P, Schreurs P, Peijs T, Meijer H (1996) Characterization of interphase conditions in composite materials. Compos A: Appl Sci Manuf 27(9):781–786

    Article  Google Scholar 

  6. Molimard J, Riche R, Vautrin A, Lee J (2005) Identification of the four orthotropic plate stiffnesses using a single open-hole tensile test. Exp Mech 45(5):404–411

    Article  Google Scholar 

  7. Bruno L, Felice G, Pagnotta L, Poggialini A, Stigliano G (2008) Elastic characterization of orthotropic plates of any shape via static testing. Int J Solids Struct 45:908–920

    Article  MATH  Google Scholar 

  8. Avril S, Bonnet M, Bretelle AS, Grédiac M, Hild F, Ienny P, Latourte F, Lemosse D, Pagano S, Pagnacco E, Pierron F (2008) Overview of identification methods of mechanical parameters based on full-field measurements. Exp Mech 48(4):381–402

    Article  Google Scholar 

  9. Sztefek P, Olsson R (2008) Tensile stiffness distribution in impacted composite laminates determined by an inverse method. Compos A: Appl Sci Manuf 39(8):1282–1293

    Article  Google Scholar 

  10. Réthoré J, Muhibullah, Elguedj T, Coret M, Chaudet P, Combescure A (2013). Int J Solids Struct 50:73–85

    Article  Google Scholar 

  11. Azzouna MB, Feissel P, Villon P (2013) Identification of elastic properties from full-field measurements: a numerical study of the effect of filtering on the identification results. Meas Sci Technol 24(5):055,603

    Article  Google Scholar 

  12. Bornert M, Brémand F, Doumalin P, Dupré JC, Fazzini M, Grédiac M, Hild F, Mistou S, Molimard J, Orteu JJ, Robert L, Surrel Y, Vacher P, Wattrisse B (2009) Assessment of digital image correlation measurement errors: methodology and results. Exp Mech 49(3):353–370

    Article  Google Scholar 

  13. Hild F, Roux S (2012) Comparison of local and global approaches to digital image correlation. Exp Mech 52(9):1503–1519

    Article  Google Scholar 

  14. Sutton M, Wolters W, Peters W, Ranson W, McNeill S (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1(3):133–139

    Article  Google Scholar 

  15. Bruck H, McNeill S, Sutton M, Peters W (1989) Digital image correlation using Newton-Raphson method of partial differential correction. Exp Mech 29:261–267

    Article  Google Scholar 

  16. Sun Y, Pang J, Wong CK, Su F (2005) Finite element formulation for a digital image correlation method. Appl Opt 44(34):7357–7363

    Article  Google Scholar 

  17. Besnard G, Hild F, Roux S (2006) Finite-element displacement fields analysis from digital images: application to Portevin-Le châtelier bands. Exp Mech 46(6):789–803

    Article  Google Scholar 

  18. Fehrenbach J, Masmoudi M (2008) A fast algorithm for image registration. C R Math 346(9-10):593–598

    Article  MATH  MathSciNet  Google Scholar 

  19. Wang YQ, Sutton MA, Bruck HA, Schreier HW (2009) Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements. Strain 45(2):160–178

    Article  Google Scholar 

  20. Leclerc H, Périé JN, Roux S, Hild F (2009) Integrated digital image correlation for the identification of mechanical properties. Lect Notes Comput Sci 5496:161–171

    Article  Google Scholar 

  21. Kavanagh KT, Clough RW (1971) Finite element applications in the characterization of elastic solids. Int J Solids Struct 7:11–23

    Article  MATH  Google Scholar 

  22. Lecompte D, Smits A, Sol H, Vantomme J, Hemelrijck DV (2007) Mixed numerical-experimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens. Int J Solids Struct 44(5):1643–1656

    Article  Google Scholar 

  23. Sztefek P, Olsson R (2009) Nonlinear compressive stiffness in impacted composite laminates determined by an inverse method. Compos A: Appl Sci Manuf 40(3):260–272

    Article  Google Scholar 

  24. Lucas B, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: Proceedings of imaging understanding workshop, pp 121–130

  25. Horn B, Schunck G (1981) Determining optical flow. Artif Intell 17:185–203

    Article  Google Scholar 

  26. Roux S, Hild F, Berthaud Y (2002) Correlation image veloci- metry : a spectral approach. Appl Opt 41:108–115

    Article  Google Scholar 

  27. Mortazavi F, Levesque M, Villemure I (2013) Image-based continuous displacement measurements using an improved spectral approach. Strain 49(3):233–248

    Article  Google Scholar 

  28. Cheng P, Sutton M, Schreier H, McNeill SR (2002) Full-field speckle pattern image correlation with b-spline deformation function. Exp Mech 42(3):344–352

    Article  Google Scholar 

  29. Réthoré J, Elguedj T, Simon P, Coret M (2010) On the use of nurbs functions for displacement derivatives measurement by digital image correlation. Exp Mech 50:1099–1116

    Article  Google Scholar 

  30. Passieux JC, Périé JN (2012) High resolution digital image correlation using proper generalized decomposition: PGD-DIC. Int J Numer Methods Eng 92(6):531–550

    Article  Google Scholar 

  31. Roux S, Hild F (2006) Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J Fract 140:141–157

    Article  MATH  Google Scholar 

  32. Hild F, Roux S, Guerrero N, Marante ME, Flórez-López J (2011) Calibration of constitutive models of steel beams subject to local buckling by using digital image correlation. Eur J Mech - A/Solids 30(1):1–10

    Article  MATH  Google Scholar 

  33. Leclerc H, Périé JN, Roux S, Hild F (2011) Voxel-scale digital volume correlation. Exp Mech 51(4):479–490

    Article  Google Scholar 

  34. Bay H, Ess A, Tuytelaars T, Gool LV (2008) SURF: speeded up robust features. Comp Vision Image Underst 110(3):346–359

    Article  Google Scholar 

  35. Matas J, Chum O, Urban M, Pajdla T (2004) Robust wide-baseline stereo from maximally stable extremal regions. Image Vis Comput 22(10):761–767

    Article  Google Scholar 

  36. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  37. Orteu, JJ, Garcia, D, Robert, L, Bugarin, F (2006) A speckle-texture image generator. In: Speckle’06 international conference, vol 6341. doi:10.1117/12.695280

  38. Perlin, K (1985) An image synthesizer. In: SIGGRAPH’85 international conference. San Francisco, California, pp 1643–1656

  39. Lava P, Cooreman S, Coppieters S, De Strycker M, Debruyne D (2009) Assessment of measuring errors in dic using deformation fields generated by plastic fea. Opt Lasers Eng 47:747–753

    Article  Google Scholar 

  40. Schreier H, Braasch J, Sutton M (2000) Systematic errors in digital image correlation caused by intensity interpolation. Opt Eng 39(11):2915–2921

    Article  Google Scholar 

  41. Lekhnitskii S, Tsai SW, Cheron T (1968) Anisotropic plates. Gordon and Breach, New York

  42. Amiot F, Bornert M, Doumalin P, Dupré JC, Fazzini M, Orteu JJ, Poilâne C, Robert L, Rotinat R, Toussaint E, Wattrisse B, Wienin JS (2013) Assessment of digital image correlation measurement accuracy in the ultimate error regime: main results of a collaborative benchmark. Strain 49(6):483–496

    Article  Google Scholar 

  43. Geuzaine C, Remacle JF (2009) Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331

    Article  MATH  MathSciNet  Google Scholar 

  44. Reu P, Miller T (2008) The application of high-speed digital image correlation. J Strain Anal Eng Des 43(8):673–688

    Article  Google Scholar 

  45. Wang W, Mottershead JE, Ihle A, Siebert T, Schubach HR (2011) Finite element model updating from full-field vibration measurement using digital image correlation. J Sound Vib 330(8):1599–1620

    Article  Google Scholar 

  46. Besnard G, Leclerc H, Roux S, Hild F (2012) Analysis of image series through digital image correlation. J Strain Anal Eng Des 47(4):214–228

    Article  Google Scholar 

  47. Gago J, Kelly D, Zienkiewicz O, Babŭska I (1983) A posteriori error analysis and adaptative processes in finite element method. part 2: adaptative mesh refinement. Int J Numer Methods Eng 19:1621–1656

    Article  MATH  Google Scholar 

  48. Bizeul M, Bouvet C, Barrau JJ, Cuenca R (2010) Influence of woven ply degradation on fatigue crack growth in thin notched composites under tensile loading. Int J Fatigue 32(1):60–65

    Article  Google Scholar 

  49. Chalal H, Meraghni F, Pierron F, Grédiac M (2004) Direct identification of the damage behaviour of composite materials using the virtual fields method. Compos A: Appl Sci Manuf 35(7-8):841–848

    Article  Google Scholar 

  50. Grédiac M, Pierron F, Avril S, Toussaint E (2006) The virtual fields method for extracting constitutive parameters from full-field measurements: a review. Strain 42(4):233–253

    Article  Google Scholar 

  51. Pierron F, Vert G, Burguete R, Avril S, Rotinat R, Wisnom MR (2007) Identification of the orthotropic elastic stiffnesses of composites with the virtual fields method: sensitivity study and experimental validation. Strain 43(3):250–259

    Article  Google Scholar 

  52. Roux S, Hild F (2008) Digital image mechanical identification (dimi). Exp Mech 48(4):495–508

    Article  Google Scholar 

  53. Crouzeix L, Périé JN, Collombet F, Douchin B (2009) An orthotropic variant of the equilibrium gap method applied to the analysis of a biaxial test on a composite material. Compos A: Appl Sci Manuf 40(11):1732–1740

    Article  Google Scholar 

  54. Ben Azzouna M, Périé JN, Guimard JM, Hild F, Roux S (2011) On the identification and validation of an anisotropic damage model using full-field measurements. Int J Damage Mech 20(8):1130–1150

    Article  Google Scholar 

  55. Gras R, Leclerc H, Roux S, Otin S, Schneider J, Pri JN (2013) Identification of the out-of-plane shear modulus of a 3d woven composite. Exp Mech 53(5):719–730

    Article  Google Scholar 

  56. Wang W, Mottershead JE, Sebastian CM, Patterson EA (2011) Shape features and finite element model updating from full-field strain data. Int J Solids Struct 48(11-12):1644–1657

    Article  MATH  Google Scholar 

  57. Bizeul M, Bouvet C, Barrau J, Cuenca R (2011) Fatigue crack growth in thin notched woven glass composites under tensile loading. part ii: modelling. Compos Sci Technol 71(3):297–305

    Article  Google Scholar 

  58. Hallett S, Green B, Jiang WG, Cheung K, Wisnom M (2009) The open hole tensile test: a challenge for virtual testing of composites. Int J Fract 158(2):169– 181

    Article  MATH  Google Scholar 

  59. Geers M, de Borst R, Peijs T (1999) Mixed numerical-experimental identification of non-local characteristics of random-fibre-reinforced composites. Compos Sci Technol 59(10):1569–1578

    Article  Google Scholar 

  60. Shen B, Paulino G (2011) irect extraction of cohesive fracture properties from digital image correlation: a hybrid inverse technique. Exp Mech 51(2):143–163

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the French “Agence Nationale de la Recherche” under the grant ANR-12-RMNP-0001 (VERTEX project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-C. Passieux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passieux, JC., Bugarin, F., David, C. et al. Multiscale Displacement Field Measurement Using Digital Image Correlation: Application to the Identification of Elastic Properties. Exp Mech 55, 121–137 (2015). https://doi.org/10.1007/s11340-014-9872-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-014-9872-4

Keywords

Navigation