Skip to main content
Log in

In Situ Friction Coefficient Measurement of Complex Contact Configuration from Dialog Between Digital Image Correlation and Numerical Modeling

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

We present a non-intrusive in situ measuring method to obtain the mean coefficient of friction (COF) in a common edge contact of complex shape. The significance of COF on computed contact stresses, and thus on predicted lifetime compels us to develop an accurate derivation method. A dovetail specimen, accounting for the blade/disk interface of gas turbine engines, is subjected to static uniaxial tension, and displacements fields are measured on the lateral face, near contact, with Digital Image Correlation. A Finite Element Method Updating identification is employed to identify the mean COF at any loading cycle operating within the full-slip regime. The numerical model is first validated through a series of virtual tests. Application to a Low-Cycle Fatigue test shows an increase of the COF with the number of cycles. The study also brings to light the high sensibility of the specimen to geometrical positioning.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

Not applicable since no datasets were generated during the present study.

References

  1. Amontons, G.: De la résistance causée dans les machines. Mémoires de l’Académie Royale 257–282 (1699)

  2. Coulomb: Théorie des machines simples, en eyant égard au frottement de leurs parties et a la roideur des cordages. Mémoires de Mathématique et de Physique de l’Académie Royale 161–342 (1785)

  3. Dobromirski, J.M.: Variables of fretting process: are there 50 of them? In: Attia, M.H., Waterhouse, R.B. (eds.) ASTM STP, pp. 60–66. ASTM International, Philadelphia (1992)

    Google Scholar 

  4. Mangardich, D., Abrari, F., Fawaz, Z.: A fracture mechanics based approach for the fretting fatigue of aircraft engine fan dovetail attachments. Int. J. Fatigue 129, 105213 (2019). https://doi.org/10.1016/j.ijfatigue.2019.105213

    Article  CAS  Google Scholar 

  5. Liu, Y., Xu, J.-Q., Mutoh, Y.: Evaluation of fretting wear based on the frictional work and cyclic saturation concepts. Int. J. Mech. Sci. 50(5), 897–904 (2008). https://doi.org/10.1016/j.ijmecsci.2007.09.011

    Article  Google Scholar 

  6. Yue, T., Abdel Wahab, M.: Finite element analysis of fretting wear under variable coefficient of friction and different contact regimes. Tribol. Int. 107, 274–282 (2017). https://doi.org/10.1016/j.triboint.2016.11.044

    Article  CAS  Google Scholar 

  7. Swalla, D.R., Neu, R.W.: Influence of coefficient of friction on fretting fatigue crack nucleation prediction. Tribol. Int. 34(7), 493–503 (2001). https://doi.org/10.1016/S0301-679X(01)00048-2

    Article  Google Scholar 

  8. Denaux, M.: Simulation numérique de la criticité à amorçage de fissure de fretting induit par un chargement vibratoire: application aux liaisons pale/disque de turbomachine. Thèse de doctorat, INSA Lyon (2018)

  9. Hills, D.A., Nowell, D., Sackfield, A.: Surface fatigue considerations in fretting. In: Dowson, D., Taylor, C.M., Godet, M., Berthe, D. (eds.) Tribology Series. Interface Dynamics, vol. 12, pp. 35–40. Elsevier, New York (1987)

    Google Scholar 

  10. Sassy, O.: Etude expérimentale du comportement sous chargement de fretting simple à haute température de superalliages à base nickel MC2 et CMSX-4. Application aux aubes de turbine pour moteur d’hélicoptère. Thèse de doctorat, Ecole Centrale de Lyon (2017)

  11. Endo, K., Goto, H., Fukunaga, T.: Behaviors of frictional force in fretting fatigue. Bull. JSME 17(108), 647–654 (1974). https://doi.org/10.1299/jsme1958.17.647

    Article  Google Scholar 

  12. Milestone, W.D., Janeczko, J.T.: Friction between steel surfaces during fretting. Wear 18(1), 29–40 (1971). https://doi.org/10.1016/0043-1648(71)90062-7

    Article  Google Scholar 

  13. Ben David, O., Fineberg, J.: Static friction coefficient is not a material constant. Phys. Rev. Lett. 106(25), 254301 (2011). https://doi.org/10.1103/PhysRevLett.106.254301

    Article  CAS  Google Scholar 

  14. Hills, D.A., Nowell, D.: Mechanics of Fretting Fatigue. Solid Mechanics and Its Applications. Springer, Netherlands (1994)

    Google Scholar 

  15. Nowell, D., Dini, D.: Stress gradient effects in fretting fatigue. Tribol. Int. 36(2), 71–78 (2003). https://doi.org/10.1016/S0301-679X(02)00134-2

    Article  Google Scholar 

  16. Muñoz, S., Proudhon, H., Domínguez, J., Fouvry, S.: Prediction of the crack extension under fretting wear loading conditions. Int. J. Fatigue 28(12), 1769–1779 (2006). https://doi.org/10.1016/j.ijfatigue.2006.01.002

    Article  CAS  Google Scholar 

  17. Heredia, S., Fouvry, S.: Introduction of a new sliding regime criterion to quantify partial, mixed and gross slip fretting regimes: correlation with wear and cracking processes. Wear 269(7), 515–524 (2010). https://doi.org/10.1016/j.wear.2010.05.002

    Article  CAS  Google Scholar 

  18. Cattaneo, C.: Sul contatto di due corpi elastici: Distribuzione locale degli storzi. Rendiconti dell Accademia dei Lincei 27, 343–348434436474478 (1938)

    Google Scholar 

  19. Mindlin, R.D.: Compliance of elastic bodies in contact. J. Appl. Mech. 16(3), 259–268 (1949). https://doi.org/10.1115/1.4009973

    Article  Google Scholar 

  20. Proudhon, H., Fouvry, S., Buffière, J.-Y.: A fretting crack initiation prediction taking into account the surface roughness and the crack nucleation process volume. Int. J. Fatigue 27(5), 569–579 (2005). https://doi.org/10.1016/j.ijfatigue.2004.09.001

    Article  CAS  Google Scholar 

  21. Dini, D., Nowell, D.: Prediction of the slip zone friction coefficient in flat and rounded contact. Wear 254(3), 364–369 (2003). https://doi.org/10.1016/S0043-1648(03)00010-3

    Article  CAS  Google Scholar 

  22. Hojjati Talemi, R., Abdel Wahab, M., De Pauw, J., De Baets, P.: Prediction of fretting fatigue crack initiation and propagation lifetime for cylindrical contact configuration. Tribol. Int. 76, 73–91 (2014). https://doi.org/10.1016/j.triboint.2014.02.017

    Article  Google Scholar 

  23. BS EN 1090-3: execution of steel structures and aluminium structures (2008)

  24. Nesládek, M., Španiel, M., Jurenka, J., Růžička, J., Kuželka, J.: Fretting fatigue—experimental and numerical approaches. Int. J. Fatigue 44, 61–73 (2012). https://doi.org/10.1016/j.ijfatigue.2012.05.015

    Article  Google Scholar 

  25. Juoksukangas, J., Lehtovaara, A., Mäntylä, A.: A comparison of relative displacement fields between numerical predictions and experimental results in fretting contact. Proc. Inst. Mech. Eng. Part J 230(10), 1273–1287 (2016). https://doi.org/10.1177/1350650116633573

    Article  Google Scholar 

  26. Magaziner, R., Jin, O., Mall, S.: Slip regime explanation of observed size effects in fretting. Wear 257(1), 190–197 (2004). https://doi.org/10.1016/j.wear.2003.12.005

    Article  CAS  Google Scholar 

  27. Everitt, N.M., Ding, J., Bandak, G., Shipway, P.H., Leen, S.B., Williams, E.J.: Characterisation of fretting-induced wear debris for Ti-6Al-4 V. Wear 267(1), 283–291 (2009). https://doi.org/10.1016/j.wear.2008.12.032

    Article  CAS  Google Scholar 

  28. Paulin, C., Fouvry, S., Meunier, C.: Finite element modelling of fretting wear surface evolution: application to a Ti-6A1-4V contact. Wear 264(1–2), 26–36 (2008). https://doi.org/10.1016/j.wear.2007.01.037

    Article  CAS  Google Scholar 

  29. Mulvihill, D.M., Kartal, M.E., Olver, A.V., Nowell, D., Hills, D.A.: Investigation of non-Coulomb friction behaviour in reciprocating sliding. Wear 271(5), 802–816 (2011). https://doi.org/10.1016/j.wear.2011.03.014

    Article  CAS  Google Scholar 

  30. Fouvry, S., Duó, P., Perruchaut, P.: A quantitative approach of Ti-6Al-4V fretting damage: friction, wear and crack nucleation. Wear 9–10(257), 916–929 (2004). https://doi.org/10.1016/j.wear.2004.05.011

    Article  CAS  Google Scholar 

  31. Llavori, I., Zabala, A., Aginagalde, A., Tato, W., Ayerdi, J.J., Gómez, X.: Critical analysis of coefficient of friction derivation methods for fretting under gross slip regime. Tribol. Int. 143, 105988 (2020). https://doi.org/10.1016/j.triboint.2019.105988

    Article  Google Scholar 

  32. Jin, X., Sun, W., Shipway, P.H.: Derivation of a wear scar geometry-independent coefficient of friction from fretting loops exhibiting non-Coulomb frictional behaviour. Tribol. Int. 102, 561–568 (2016). https://doi.org/10.1016/j.triboint.2016.06.012

    Article  Google Scholar 

  33. Diomidis, N., Mischler, S., More, N.S., Roy, M., Paul, S.N.: Fretting-corrosion behavior of \(\beta \) titanium alloys in simulated synovial fluid. Wear 271(7), 1093–1102 (2011). https://doi.org/10.1016/j.wear.2011.05.010

    Article  CAS  Google Scholar 

  34. Majzoobi, G.H., Abbasi, F.: On the effect of contact geometry on fretting fatigue life under cyclic contact loading. Tribol. Lett. 65(4), 125 (2017). https://doi.org/10.1007/s11249-017-0906-9

    Article  CAS  Google Scholar 

  35. Rethore, J.: UFreckles. Zenodo (2018). https://doi.org/10.5281/ZENODO.1433776

    Article  Google Scholar 

  36. Sinclair, G.B., Cormier, N.G., Griffin, J.H., Meda, G.: Contact stresses in dovetail attachments: finite element modeling. J. Eng. Gas Turbines Power 124(1), 182–189 (2002). https://doi.org/10.1115/1.1391429

    Article  Google Scholar 

  37. Ben Azzouna, M., Feissel, P., Villon, P.: Identification of elastic properties from full-field measurements: a numerical study of the effect of filtering on the identification results. Meas. Sci. Technol. 24, 055603 (2013). https://doi.org/10.1088/0957-0233/24/5/055603

    Article  CAS  Google Scholar 

  38. Gean, M., Farris, T.: Finite element analysis of the mechanics of blade/disk contacts. In: 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Structures, Structural Dynamics, and Materials and Co-located Conferences. American Institute of Aeronautics and Astronautics, Texas (2005). https://doi.org/10.2514/6.2005-1907

  39. Lee, H., Mall, S.: Some observations on frictional force during fretting fatigue. Tribol. Lett. 17(3), 491–499 (2004). https://doi.org/10.1023/B:TRIL.0000044496.85398.76

    Article  Google Scholar 

  40. Ramalho, A., Celis, J.-P.: Fretting laboratory tests: analysis of the mechanical response of test rigs. Tribol. Lett. 14(3), 187–196 (2003). https://doi.org/10.1023/A:1022368414455

    Article  Google Scholar 

Download references

Funding

This work was supported by Safran Helicopter Engines, France and ANRT, France (CIFRE Grant # 2019/1395).

Author information

Authors and Affiliations

Authors

Contributions

AH stands for the major contribution to all parts and was also the one developing the numerical solution procedure and running the simulations. The experimental set-up was made by PC. All authors contributed to the conceptualization and methodology. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Daniel Nelias.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hingue, A., Chaise, T., Chaudet, P. et al. In Situ Friction Coefficient Measurement of Complex Contact Configuration from Dialog Between Digital Image Correlation and Numerical Modeling. Tribol Lett 71, 93 (2023). https://doi.org/10.1007/s11249-023-01767-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-023-01767-8

Keywords

Navigation