Skip to main content
Log in

Equal Noise Resistance of Two Mainstream Iterative Sub-pixel Registration Algorithms in Digital Image Correlation

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The inverse compositional Gauss-Newton (IC-GN) algorithm and the forward additive Newton-Raphson (FA-NR) algorithm are two mainstream iterative sub-pixel registration algorithms in digital image correlation. This study compares the accuracy and convergence ability of the two algorithms by theoretical analysis and numerical experiments in the speckle images that have been contaminated with artificial Gaussian noise. Based on the derived error model, the systematic errors of the two algorithms are dominated by interpolation-induced error and are insensitive to noise. The random errors are proportional to the noise level. The noise also reduces the convergence radius and rate in the two algorithms. The two algorithms demonstrate equal noise resistance due to their mathematical equivalence. These conclusions are well supported by the experimental study. The recently reported vulnerability of the FA-NR algorithm to noise is not associated with the inherent flaw of the algorithm but with its implementation. If an inappropriate method is employed to estimate the gradients at sub-pixel locations in the FA-NR algorithm, abnormally large errors may be induced. This problem can be eliminated using the method that is proposed in this study, which has an insignificant extra-computation cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sutton MA, Orteu JJ, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New York

    Google Scholar 

  2. Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 20(6):062001

    Article  Google Scholar 

  3. Pan B (2011) Recent progress in digital image correlation. Exp Mech 51(7):1223–1235

    Article  Google Scholar 

  4. Sutton MA (2013) Computer vision-based, noncontacting deformation measurements in mechanics: a generational transformation. Appl Mech Rev 65(5):050802

    Article  Google Scholar 

  5. Pan B, Xie H, Xu B, Dai F (2006) Performance of sub-pixel registration algorithms in digital image correlation. Meas Sci Technol 17(6):1615–1621

    Article  Google Scholar 

  6. Bruck HA, McNeill SR, Sutton MA, Peters WH (1989) Digital image correlation using Newton-Raphson method of partial differential correction. Exp Mech 29(3):261–267

    Article  Google Scholar 

  7. Vendroux G, Knauss WG (1998) Submicron deformation field measurements: part 2. Improved digital image correlation. Exp Mech 38(2):86–92

    Article  Google Scholar 

  8. Baker S, Matthews I (2004) Lucas-Kanade 20 years on: a unifying framework. Int J Comput Vis 56(3):221–255

    Article  Google Scholar 

  9. Pan B, Li K, Tong W (2013) Fast, robust and accurate digital image correlation calculation without redundant computations. Exp Mech 53(7):1277–1289

    Article  Google Scholar 

  10. Jiang Z, Kemao Q, Miao H, Yang J, Tang L (2015) Path-independent digital image correlation with high accuracy, speed and robustness. Opt Laser Eng 65:93–102

    Article  Google Scholar 

  11. Baker S, Matthews I (2001) Equivalence and efficiency of image alignment algorithms. Proc IEEE Conf Comp Vis Pattern Recognit 56:1090–1097

    Google Scholar 

  12. Shao X, Dai X, He X (2015) Noise robustness and parallel computation of the inverse compositional Gauss–Newton algorithm in digital image correlation. Opt Laser Eng 71:9–19

    Article  Google Scholar 

  13. Pan B, Wang B (2016) Digital image correlation with enhanced accuracy and efficiency : a comparison of two subpixel registration algorithms. Exp Mech doi. doi:10.1007/s11340-016-0180-z

    Google Scholar 

  14. Schreier HW, Braasch JR, Sutton MA (2000) Systematic errors in digital image correlation caused by intensity interpolation. Opt Eng 39(11):2915–2921

    Article  Google Scholar 

  15. Wang YQ, Sutton MA, Bruck HA, Schreier HW (2009) Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements. Strain 45(2):160–178

    Article  Google Scholar 

  16. Su Y, Zhang Q, Gao Z, Xu X, Wu X (2015) Fourier-based interpolation bias prediction in digital image correlation. Opt Express 23:19242–19260

    Article  Google Scholar 

  17. Su Y, Zhang Q, Gao Z, Xu X (2016) Noise-induced bias for convolution-based interpolation in digital image correlation. Opt Express 24(2):1175–1195

    Article  Google Scholar 

  18. Blaysat B, Grédiac M, Sur F (2016) Effect of interpolation on noise propagation from images to DIC displacement maps. Int J Numer Methods Eng. doi:10.1002/nme.5212

    MathSciNet  Google Scholar 

  19. Schreier HW, Sutton MA (2002) Systematic errors in digital image correlation due to undermatched subset shape functions. Exp Mech 42(3):303–310

    Article  Google Scholar 

  20. Gao Y, Cheng T, Su Y, Xu X, Zhang Y, Zhang Q (2015) High-efficiency and high-accuracy digital image correlation for three-dimensional measurement. Opt Laser Eng 65:73–80

    Article  Google Scholar 

  21. Wang Y, Lava P, Reu P, Debruyne D (2016) Theoretical analysis on the measurement errors of local 2D DIC: part I temporal and spatial uncertainty quanti fi cation of displacement measurements. Strain 52(2):110–128

    Article  Google Scholar 

  22. Wang Y, Lava P, Reu P, Debruyne D, Ab C (2016) Theoretical analysis on the measurement errors of local 2D DIC: part II assessment of strain errors of the local smoothing method – approaching an answer to the overlap question. Strain 52(2):129–147

    Article  Google Scholar 

  23. Pan B (2014) An evaluation of convergence criteria for digital image correlation using inverse compositional Gauss-Newton algorithm. Strain 50(1):48–56

    Article  Google Scholar 

  24. Pan B, Xie H, Wang Z (2010) Equivalence of digital image correlation criteria for pattern matching. Appl Opt 49(28):5501–5509

    Article  Google Scholar 

  25. Fornberg B (1988) Generation of finite difference formulas on arbitrarily spaced grids. Math Comput 51(184):699–706

    Article  MathSciNet  MATH  Google Scholar 

  26. Blaysat B, Gr M (2016) On the propagation of camera sensor noise to displacement maps obtained by dic - an experimental study. Exp Mech 56(6):919–944

    Article  Google Scholar 

  27. Pan B, Li K (2011) A fast digital image correlation method for deformation measurement. Opt Laser Eng 49(7):841–847

    Article  MathSciNet  Google Scholar 

  28. Zhang L, Wang T, Jiang Z, Kemao Q, Liu Y, Liu Z, Tang L, Dong S (2015) High accuracy digital image correlation powered by GPU-based parallel computing. Opt Laser Eng 69:7–12

    Article  Google Scholar 

Download references

Acknowledgements

The study is financially supported by the National Natural Science Foundation of China (Grant Nos. 11202081, 11272124 and 11472109) and the State Key Lab of Subtropical Building Science, South China University of Technology (2014ZC17). The authors are grateful to Prof. Bing Pan (Beijing University of Aeronautics and Astronautics, China) for providing the speckle image and the program to shift the images in the frequency domain and Dr. Hubert Schreier (Correlated Solutions, Inc.) for inspiring discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Jiang.

Appendices

Appendix A: Mathematical derivation of the expectation and variance of the displacement error for the IC-GN algorithm

On the noise contaminated speckle images, the incremental deformation vector ΔP IC ‐ GN can be expressed as

$$ \Delta {\mathbf{P}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}=-{\tilde{\mathbf{H}}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}^{-1}\sum_{i=1}^n\sum_{j=1}^m{\left[\nabla \tilde{f}\left({x}_i,{y}_j\right)\frac{\partial W}{\partial P}\right]}^T\left\{\begin{array}{l} f\left({x}_i,{y}_j\right)+{\xi}_f\left({x}_i,{y}_j\right)-{\overline{f}}_n\\ {}-\eta \left[ g\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\xi}_g\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right]\end{array}\right\} $$
(34)

The interpolation error of the intensity \( {\Delta}_p\left({x}_i^{\prime },{y}_j^{\prime}\right) \) at sub-pixel location \( \left({x}_i^{\prime },{y}_j^{\prime}\right) \) falls in the range of [−0.1, 0.1], as shown in Fig. 3. Its value is considerably smaller than the intensity \( \tilde{G}\left({x}_i^{\prime },{y}_j^{\prime}\right) \) in the target subset (which varies from 0 to 255) if the image is not extremely dark and the high accuracy interpolation method is selected (e.g., cubic B-spline interpolation). The mean gray intensities of the reference subset and the target subset, i.e., \( {\overline{f}}_n \) and \( {\overline{g}}_n \), can be written as:

$$ \begin{array}{l}{\overline{f}}_n=\frac{1}{ n m}\sum_{i=1}^n\sum_{j=1}^m\tilde{f}\left({x}_i,{y}_j\right)\\ {}\kern2em =\frac{1}{ n m}\sum_{i=1}^n\sum_{j=1}^m\left[ f\left({x}_i,{y}_j\right)+{\xi}_f\left({x}_i,{y}_j\right)\right]\\ {}\kern2em =\frac{1}{ n m}\sum_{i=1}^n\sum_{j=1}^m f\left({x}_i,{y}_j\right)=\overline{f}\\ {}{\overline{g}}_n=\frac{1}{ n m}\sum_{i=1}^n\sum_{j=1}^m\tilde{g}\left({x}_i^{\prime },{y}_j^{\prime}\right)\\ {}\kern2em =\frac{1}{ n m}\sum_{i=1}^n\sum_{j=1}^m\left[\tilde{G}\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\Delta}_p\left({x}_i^{\prime },{y}_j^{\prime}\right)\right]\\ {}\kern2em \approx \frac{1}{ n m}\sum_{i=1}^n\sum_{j=1}^m\left[ G\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\xi}_G\left({x}_i^{\prime },{y}_j^{\prime}\right)\right]\\ {}\kern2em =\frac{1}{ n m}\sum_{i=1}^n\sum_{j=1}^m G\left({x}_i^{\prime },{y}_j^{\prime}\right)={\overline{G}}_n\end{array} $$
(35)

where \( G\left({x}_i^{\prime },{y}_j^{\prime}\right) \) denotes the exact intensity without an interpolation error at the sub-pixel location \( \left({x}_i^{\prime },{y}_j^{\prime}\right) \) in the target subset. As location \( \left({x}_i^{\prime },{y}_j^{\prime}\right) \) in the target subset corresponds to (x i , y j ) in the reference subset, \( {\overline{f}}_n={\overline{G}}_n={\overline{g}}_n \).

Assuming a constant level of the intensity interpolation error Δ p in the target subset, we have

$$ \begin{array}{l}\sqrt{\sum_{i=1}^n\sum_{j=1}^m{\left(\tilde{g}\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right)}^2}\hfill \\ {}\approx \sqrt{\sum_{i=1}^n\sum_{j=1}^m{\left[\tilde{G}\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\Delta}_p\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{G}}_n\right]}^2}\hfill \\ {}=\sqrt{\sum_{i=1}^n\sum_{j=1}^m{\left[\tilde{G}\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{G}}_n\right]}^2+\sum_{i=1}^n\sum_{j=1}^m{\Delta}_p^2\left({x}_i^{\prime },{y}_j^{\prime}\right)+\sum_{i=1}^n\sum_{j=1}^m2{\Delta}_p\left({x}_i^{\prime },{y}_j^{\prime}\right)\left[\tilde{G}\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{G}}_n\right]}\hfill \\ {}=\sqrt{\sum_{i=1}^n\sum_{j=1}^m{\left[\tilde{G}\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{G}}_n\right]}^2+\sum_{i=1}^n\sum_{j=1}^m{\Delta}_p^2\left({x}_i^{\prime },{y}_j^{\prime}\right)}\hfill \end{array} $$
(36)

where \( {\Delta}_p^2\left({x}_i^{\prime },{y}_j^{\prime}\right) \) can be disregarded compared with \( {\left(\tilde{G}\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{G}}_n\right)}^2 \) in most of real speckle images. Combining the statistical characteristics of Gaussian white noise, we have

$$ \begin{array}{l}\sqrt{\sum_{i=1}^n\sum_{j=1}^m{\left[\tilde{g}\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right]}^2}\approx \sqrt{\sum_{i=1}^n\sum_{j=1}^m{\left[\tilde{G}\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{G}}_n\right]}^2}\\ {}\kern17.5em =\sqrt{\sum_{i=1}^n\sum_{j=1}^m{\left[\tilde{f}\left({x}_i,{y}_j\right)-{\overline{f}}_n\right]}^2}\end{array} $$
(37)

Thus

$$ \eta =\frac{\sqrt{\sum_{i=1}^n\sum_{j=1}^m{\left[\tilde{f}\left({x}_i,{y}_j\right)-{\overline{f}}_n\right]}^2}}{\sqrt{\sum_{i=1}^n\sum_{j=1}^m{\left[\tilde{g}\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right]}^2}}\approx 1 $$
(38)

Then the expectation and variance of the incremental displacement vector ΔP can be obtained:

$$ \begin{array}{l} E\left(\Delta {\mathbf{P}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}\right)\\ {}= E\left\{-{\tilde{\mathbf{H}}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}^{-1}\sum_{i=1}^n\sum_{j=1}^m\left\{{\left[\nabla \tilde{f}\left({x}_i,{y}_j\right)\frac{\partial W}{\partial P}\right]}^T\left\{\tilde{f}\left({x}_i,{y}_j\right)-{\overline{f}}_n-\left[\tilde{g}\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right]\right\}\right\}\right\}\\ {}=-{\tilde{\mathbf{H}}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}^{-1} E\left\{\sum_{i=1}^n\sum_{j=1}^m\left\{{\left[\nabla f\left({x}_i,{y}_j\right)\frac{\partial W}{\partial P}\right]}^T\left\{\tilde{f}\left({x}_i,{y}_j\right)-{\overline{f}}_n-\left[\tilde{g}\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right]\right\}\right\}\right\}\\ {}\kern1.5em -{\tilde{\mathbf{H}}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}^{-1} E\left\{\sum_{i=1}^n\sum_{j=1}^m\left\{{\left[\nabla {\xi}_f\left({x}_i,{y}_j\right)\frac{\partial W}{\partial P}\right]}^T\left\{\tilde{f}\left({x}_i,{y}_j\right)-{\overline{f}}_n-\left[\tilde{g}\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right]\right\}\right\}\right\}\end{array} $$
(39)
$$ Var\left(\Delta {\mathbf{P}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}\right)=\mathit{\operatorname{diag}}\left({\tilde{\mathbf{H}}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}^{-1}\right) Var\left\{ f\left({x}_i,{y}_j\right)+{\xi}_f\left({x}_i,{y}_j\right)-{\overline{f}}_n-\left[ g\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\xi}_g\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right]\right\} $$
(40)

where ∇ξ f (x i , y j ) = [ξ fx , ξ fy ]. According to equation (39), the expectation of ΔP IC ‐ GN can be divided into two parts, i.e.,

$$ E\left(\Delta {\mathbf{P}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}\right)={E}_{\mathrm{int}}\left(\Delta {\mathbf{P}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}\right)+{E}_{\mathrm{noise}}\left(\Delta {\mathbf{P}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}\right) $$
(41)

where

$$ \begin{array}{l}{E}_{\mathrm{int}}\left(\Delta {\mathbf{P}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}\right)\\ {}=-{\tilde{\mathbf{H}}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}^{-1}\cdot E\left\{\sum_{i=1}^n\sum_{j=1}^m\left\{{\left[\nabla f\left({x}_i,{y}_j\right)\frac{\partial W}{\partial P}\right]}^T\left\{\tilde{f}\left({x}_i,{y}_j\right)-{\overline{f}}_n-\left[\tilde{g}\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right]\right\}\right\}\right\}\\ {}{E}_{\mathrm{noise}}\left(\Delta {\mathbf{P}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}\right)\\ {}=-{\tilde{\mathbf{H}}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}^{-1}\cdot E\left\{\sum_{i=1}^n\sum_{j=1}^m\left\{{\left[\nabla {\xi}_f\left({x}_i,{y}_j\right)\frac{\partial W}{\partial P}\right]}^T\left\{\tilde{f}\left({x}_i,{y}_j\right)-{\overline{f}}_n-\left[\tilde{g}\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right]\right\}\right\}\right\}\end{array} $$
(42)

E intP IC ‐ GN) is associated with the interpolation-induced system error and E noiseP IC ‐ GN) is associated with the noise-induced system error. The two items can be further reduced:

$$ \begin{array}{l}{E}_{\mathrm{int}}\left(\Delta {\mathbf{P}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}\right)\hfill \\ {}=-{\tilde{\mathbf{H}}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}^{-1}\cdot E\left\{\sum_{i=1}^n\sum_{j=1}^m\left\{{\left[\nabla f\left({x}_i,{y}_j\right)\frac{\partial W}{\partial P}\right]}^T\left\{\begin{array}{l} f\left({x}_i,{y}_j\right)+{\xi}_f\left({x}_i,{y}_j\right)-\overline{f}-{\overline{\xi}}_f\\ {}-\left[ g\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\xi}_g\left({x}_i^{\prime },{y}_j^{\prime}\right)-\overline{g}-{\overline{\xi}}_g\right]\end{array}\right\}\right\}\right\}\hfill \\ {}=-{\tilde{\mathbf{H}}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}^{-1}\cdot E\left\{\sum_{i=1}^n\sum_{j=1}^m\left\{\left[\nabla f\left({x}_i,{y}_j\right)\frac{\partial W}{\partial P}\right]\left[ f\left({x}_i,{y}_j\right)- g\left({x}_i^{\prime },{y}_j^{\prime}\right)\right]\right\}\right\}\hfill \\ {}=-{\tilde{\mathbf{H}}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}^{-1}\cdot E\left\{\sum_{i=1}^n\sum_{j=1}^m{\left[\nabla f\left({x}_i,{y}_j\right)\frac{\partial W}{\partial P}\right]}^T\cdot h\left({x}_i,{y}_j\right)\right\}\hfill \end{array} $$
(43)
$$ \begin{array}{l}{E}_{\mathrm{noise}}\left(\Delta {\mathbf{P}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}\right)\hfill \\ {}=-{\tilde{\mathbf{H}}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}^{-1}\cdot E\left\{\sum_{i=1}^n\sum_{j=1}^m{\left[\nabla {\xi}_f\left({x}_i,{y}_j\right)\frac{\partial W}{\partial P}\right]}^T\left[\tilde{f}\left({x}_i,{y}_j\right)-{\overline{f}}_n-\left(\tilde{g}\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right)\right]\right\}\hfill \\ {}=-{\tilde{\mathbf{H}}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}^{-1}\cdot E\left\{\sum_{i=1}^n\sum_{j=1}^m{\left[\nabla {\xi}_f\left({x}_i,{y}_j\right)\frac{\partial W}{\partial P}\right]}^T\left\{\begin{array}{l} f\left({x}_i,{y}_j\right)+{\xi}_f\left({x}_i,{y}_j\right)-\overline{f}-{\overline{\xi}}_f\\ {}-\left[ g\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\xi}_g\left({x}_i^{\prime },{y}_j^{\prime}\right)-\overline{g}-{\overline{\xi}}_g\right]\end{array}\right\}\right\}\hfill \\ {}=-{\tilde{\mathbf{H}}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}^{-1}\cdot E\left\{\sum_{i=1}^n\sum_{j=1}^m{\left[\nabla {\xi}_f\left({x}_i,{y}_j\right)\frac{\partial W}{\partial P}\right]}^T\cdot {\xi}_f\left({x}_i,{y}_j\right)\right\}\hfill \end{array} $$
(44)

Figure 9 shows the distribution of the self-correlation function \( R(n)=\sum_{j=-\infty}^{\infty}\xi (j)\xi \left( j- n\right) \) of Gaussian white noise with a zero mean and different variances. This finding indicates a characteristic of R(n), i.e. R(n) = R(−n). The value of R(n) decreases sharply to a negligible level compared with R(0) when n ≥ 1. These characteristics eliminate E noiseP IC ‐ GN) when ∇ξ f (x i , y j ) is calculated using a central difference-based gradient operator. Therefore, equation (40) is simplified as follows:

$$ E\left(\Delta {\mathbf{P}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}\right)=-{\tilde{\mathbf{H}}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}^{-1}\cdot E\left\{\sum_{i=1}^n\sum_{j=1}^m{\left[\nabla f\left({x}_i,{y}_j\right)\frac{\partial W}{\partial P}\right]}^T\cdot h\left({x}_i,{y}_j\right)\right\} $$
(45)
Fig. 9
figure 9

Self-correlation curves of Gaussian white noise at various noise levels

According to the general properties of un-correlated signals (i.e.,Var(A ± B) = Var(A) + Var(B)), the variance of ΔP IC ‐ GN can be reduced to

$$ \begin{array}{l} Var\left(\Delta {\mathbf{P}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}\right)=\mathit{\operatorname{diag}}\left({\tilde{\mathbf{H}}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}^{-1}\right)\left[ Var\left( f- g\right)+ Var\left({\xi}_f-{\xi}_g\right)\right]\\ {}\kern9.5em =\mathit{\operatorname{diag}}\left({\tilde{\mathbf{H}}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}^{-1}\right)\left[ Var\left( f- g\right)+ Var\left({\xi}_f\right)+ Var\left({\xi}_g\right)\right]\\ {}\kern9.5em =\mathit{\operatorname{diag}}\left({\tilde{\mathbf{H}}}_{\mathrm{IC}\hbox{-} \mathrm{GN}}^{-1}\right)\left({\sigma}_f^2+{\sigma}_g^2\right)\end{array} $$
(46)

Appendix B: Mathematical derivation of the expectation and variance of the displacement error for the FA-NR algorithm

On the noise contaminated speckle images, the ZNSSD correlation criterion for the FA-NR algorithm can be expressed as

$$ {C}_{\mathrm{ZNSSD}}\left(\Delta {\mathbf{P}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}\right)=\sum_{i=1}^n\sum_{j=1}^m\left\{\frac{\tilde{f}\left({x}_i,{y}_j\right)-{\overline{f}}_n}{\sqrt{\sum_{i=1}^n\sum_{j=1}^m{\left[\tilde{f}\left({x}_i,{y}_j\right)-{\overline{f}}_n\right]}^2}}-\frac{\tilde{g}\left({x}_i^{\prime }+\Delta {u}_i,{y}_j^{\prime }+\Delta {v}_j\right)-{\overline{g}}_n}{\sqrt{\sum_{i=1}^n\sum_{j=1}^m{\left[\tilde{g}\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right]}^2}}\right\} $$
(47)

Substituting the first-order Taylor expansion of \( \tilde{g}\left({x}_i^{\prime }+\Delta {u}_i,{y}_j^{\prime }+\Delta {v}_j\right) \) into equation (47) yields

$$ \begin{array}{l}{C}_{\mathrm{ZNSSD}}\left(\Delta {\mathbf{P}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}\right)\hfill \\ {}=\sum_{i=1}^n\sum_{j=1}^m\left\{\frac{\tilde{f}\left({x}_i,{y}_j\right)-{\overline{f}}_n}{\sqrt{\sum_{i=1}^n\sum_{j=1}^m{\left[\tilde{f}\left({x}_i,{y}_j\right)-{\overline{f}}_n\right]}^2}}-\frac{\left[\tilde{g}\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n+\Delta {u}_i{\tilde{g}}_x\left({x}_i^{\prime },{y}_j^{\prime}\right)+\Delta {v}_j{\tilde{g}}_y\left({x}_i^{\prime },{y}_j^{\prime}\right)\right]}{\sqrt{\sum_{i=1}^n\sum_{j=1}^m{\left[\tilde{g}\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right]}^2}}\right\}\hfill \end{array} $$
(48)

Minimizating C ZNSSDP FA ‐ NR) with respect to ΔP FA ‐ NR, combined with equation (38), yields

$$ \begin{array}{l}\Delta {\mathbf{P}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}\\ {}=-{\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\sum_{i=1}^n\sum_{j=1}^m{\left[\nabla \tilde{g}\left({x}_i^{\prime },{y}_j^{\prime}\right)\frac{\partial W}{\partial p}\right]}^T\left\{\left[\tilde{g}\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right]-\eta \left[\tilde{f}\left({x}_i,{y}_j\right)-{\overline{f}}_n\right]\right\}\\ {}=-{\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\sum_{i=1}^n\sum_{j=1}^m{\left[\nabla \tilde{g}\left({x}_i^{\prime },{y}_j^{\prime}\right)\frac{\partial W}{\partial p}\right]}^T\left\{\begin{array}{l}\left[ g\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\xi}_g\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right]\\ {}-\left[ f\left({x}_i,{y}_j\right)+{\xi}_f\left({x}_i,{y}_j\right)-{\overline{f}}_n\right]\end{array}\right\}\end{array} $$
(49)

In contrast to the IC-GN algorithm, in which the gradient at an integer pixel is directly calculated using a fourth-order central difference operator, the gradient \( \nabla g\left({x}_i^{\prime },{y}_j^{\prime}\right) \) in the FA-NR algorithm at sub-pixel location \( \left({x}_i^{\prime },{y}_j^{\prime}\right) \) needs to be estimated through interpolation. Considering the interpolation error, the gradients of the image and noise map at the sub-pixel location can be written as:

$$ \begin{array}{cc}\hfill {g}_x\left({x}_i^{\prime },{y}_j^{\prime}\right)={G}_x\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\Delta}_{px},\hfill & \hfill {g}_y\left({x}_i^{\prime },{y}_j^{\prime}\right)={G}_y\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\Delta}_{py}\hfill \\ {}\hfill {\xi}_{g x}\left({x}_i^{\prime },{y}_j^{\prime}\right)={\xi}_{G x}\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\Delta}_{nx},\hfill & \hfill {\xi}_{g y}\left({x}_i^{\prime },{y}_j^{\prime}\right)={\xi}_{G y}\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\Delta}_{ny}\hfill \end{array} $$
(50)

where G x , G y , ξ Gx and ξ Gy denote the exact gradients without the interpolation error at the sub-pixel location \( \left({x}_i^{\prime },{y}_j^{\prime}\right) \), and Δ px , Δ py , Δ nx and Δ ny are the corresponding interpolation errors.

The expectation and variance of ΔP FA ‐ NR can be estimated through the procedure demonstrated in Appendix A:

$$ \begin{array}{l} E\left(\Delta {\mathbf{P}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}\right)\\ {}= E\Big[-{\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\sum_{i=1}^n\sum_{j=1}^m{\left[\nabla \tilde{g}\left({x}_i^{\prime },{y}_j^{\prime}\right)\frac{\partial W}{\partial P}\right]}^T\left\{\begin{array}{l}\left[\tilde{g}\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right]\\ {}-\left[\tilde{f}\left({x}_i,{y}_j\right)-{\overline{f}}_n\right]\end{array}\right\}\\ {}=-{\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1} E\left\{\sum_{i=1}^n\sum_{j=1}^m{\left[\nabla g\left({x}_i^{\prime },{y}_j^{\prime}\right)\frac{\partial W}{\partial P}\right]}^T\left\{\begin{array}{l}\left[\tilde{g}\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right]\\ {}-\left[\tilde{f}\left({x}_i,{y}_j\right)-{\overline{f}}_n\right]\end{array}\right\}\right\}\\ {}\kern1.5em -{\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1} E\left\{\sum_{i=1}^n\sum_{j=1}^m{\left[\nabla {\xi}_g\left({x}_i^{\prime },{y}_j^{\prime}\right)\frac{\partial W}{\partial P}\right]}^T\left\{\begin{array}{l}\left[\tilde{g}\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right]\\ {}-\left[\tilde{f}\left({x}_i,{y}_j\right)-{\overline{f}}_n\right]\end{array}\right\}\right\}\\ {}={E}_{\mathrm{int}}\left(\Delta {\mathbf{P}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}\right)+{E}_{\mathrm{noise}}\left(\Delta {\mathbf{P}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}\right)\end{array} $$
(51)
$$ \begin{array}{l} Var\left(\Delta {\mathbf{P}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}\right)\\ {}= Var\left\{-{\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\sum_{i=1}^n\sum_{j=1}^m{\left[\nabla \tilde{g}\left({x}_i^{\prime },{y}_j^{\prime}\right)\frac{\partial W}{\partial p}\right]}^T\left\{\begin{array}{l}\left[ g\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\xi}_g\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right]\\ {}-\left[ f\left({x}_i,{y}_j\right)+{\xi}_f\left({x}_i,{y}_j\right)-{\overline{f}}_n\right]\end{array}\right\}\right\}\\ {}= Var\left\{-{\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\sum_{i=1}^n\sum_{j=1}^m{\left[\nabla \tilde{G}\left({x}_i^{\prime },{y}_j^{\prime}\right)\frac{\partial W}{\partial p}\right]}^T\left\{\begin{array}{l}\left[ g\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\xi}_g\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right]\\ {}-\left[ f\left({x}_i,{y}_j\right)+{\xi}_f\left({x}_i,{y}_j\right)-{\overline{f}}_n\right]\end{array}\right\}\right\}\\ {}\kern1.5em + Var\left\{-{\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\sum_{i=1}^n\sum_{j=1}^m{\left[\left[{\Delta}_{tx},{\Delta}_{ty}\right]\frac{\partial W}{\partial p}\right]}^T\left\{\begin{array}{l}\left[ g\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\xi}_g\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right]\\ {}-\eta \left[ f\left({x}_i,{y}_j\right)+{\xi}_f\left({x}_i,{y}_j\right)-{\overline{f}}_n\right]\end{array}\right\}\right\}\\ {}=\mathit{\operatorname{diag}}\left({\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\right) Var\left\{\begin{array}{l}\left[ g\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\xi}_g\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right]\\ {}-\left[ f\left({x}_i,{y}_j\right)+{\xi}_f\left({x}_i,{y}_j\right)-{\overline{f}}_n\right]\end{array}\right\}\\ {}\kern1.5em +{E}^2\left({\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\sum_{i=1}^n\sum_{j=1}^m{\left[\left[{\Delta}_{tx},{\Delta}_{ty}\right]\frac{\partial W}{\partial p}\right]}^T\right)\cdot Var\left(\begin{array}{l}\left[ g\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\xi}_g\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right]\\ {}-\left[ f\left({x}_i,{y}_j\right)+{\xi}_f\left({x}_i,{y}_j\right)-{\overline{f}}_n\right]\end{array}\right)\\ {}=\mathit{\operatorname{diag}}\left({\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\right)\left[ Var\left( g- f\right)+ Var\left({\xi}_f\right)+ Var\left({\xi}_g\right)\right]\\ {}\kern1.5em +{E}^2\left({\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\sum_{i=1}^n\sum_{j=1}^m{\left[\left[{\Delta}_{tx},{\Delta}_{ty}\right]\frac{\partial W}{\partial p}\right]}^T\right)\left[ Var\left( g- f\right)+ Var\left({\xi}_f\right)+ Var\left({\xi}_g\right)\right]\\ {}=\mathit{\operatorname{diag}}\left({\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\right)\left({\sigma}_f^2+{\sigma}_g^2\right)+{E}^2\left[{\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\sum_{i=1}^n\sum_{j=1}^m{\left[\left[{\Delta}_{tx},{\Delta}_{ty}\right]\frac{\partial W}{\partial p}\right]}^T\right]\left({\sigma}_f^2+{\sigma}_g^2\right)\end{array} $$
(52)

E intP FA ‐ NR) can be reduced:

$$ \begin{array}{l}{E}_{\mathrm{int}}\left(\Delta {\mathbf{P}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}\right)\\ {}=-{\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\cdot E\left\{\sum_{i=1}^n\sum_{j=1}^m{\left[\nabla g\left({x}_i^{\prime },{y}_j^{\prime}\right)\frac{\partial W}{\partial P}\right]}^T\left\{\begin{array}{l}\left[\tilde{g}\left({x}_i^{\prime },{y}_j^{\prime}\right)-{\overline{g}}_n\right]\\ {}-\left[\tilde{f}\left({x}_i,{y}_j\right)-{\overline{f}}_n\right]\end{array}\right\}\right\}\\ {}=-{\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\cdot E\left\{\sum_{i=1}^n\sum_{j=1}^m{\left[\left[\begin{array}{l}{G}_x\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\Delta}_{px},\\ {}{G}_y\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\Delta}_{py}\end{array}\right]\frac{\partial W}{\partial P}\right]}^T\left[\begin{array}{l} g\left({x}_i^{\prime },{y}_j^{\prime}\right)- f\left({x}_i,{y}_j\right)\\ {}-\left({\overline{g}}_n-{\overline{f}}_n\right)\end{array}\right]\right\}\\ {}\approx -{\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\cdot E\left\{\sum_{i=1}^n\sum_{j=1}^m{\left[\nabla G\left({x}_i^{\prime },{y}_j^{\prime}\right)\frac{\partial W}{\partial P}\right]}^T\cdot h\left({x}_i,{y}_j\right)\right\}\\ {}\kern1.5em -{\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\cdot E\left\{\sum_{i=1}^n\sum_{j=1}^m{\left[\left[{\Delta}_{px},{\Delta}_{py}\right]\cdot \frac{\partial W}{\partial P}\right]}^T\cdot h\left({x}_i,{y}_j\right)\right\}\end{array} $$
(53)

where \( {\left[\left[{\Delta}_{px},{\Delta}_{py}\right]\cdot \frac{\partial W}{\partial P}\right]}^T\cdot h\left({x}_i,{y}_j\right) \) is a high minimum-order quantity compared with \( {\left[\nabla G\left({x}_i^{\prime },{y}_j^{\prime}\right)\frac{\partial W}{\partial P}\right]}^T\cdot h\left({x}_i,{y}_j\right) \) and can be neglected. Thus,

$$ {E}_{\mathrm{int}}\left(\Delta {\mathbf{P}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}\right)\approx -{\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\cdot E\left\{\sum_{i=1}^n\sum_{j=1}^m{\left[\nabla G\left({x}_i^{\prime },{y}_j^{\prime}\right)\frac{\partial W}{\partial P}\right]}^T\cdot h\left({x}_i,{y}_j\right)\right\} $$
(54)

For E noiseP FA ‐ NR), combining \( E\left({\xi}_G\left({x}_i^{\prime },{y}_j^{\prime}\right)\right)=0 \) and \( \nabla {\xi}_g\left({x}_i^{\prime },{y}_j^{\prime}\right)=\left[{\xi}_{Gx}\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\Delta}_{nx},{\xi}_{Gx}\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\Delta}_{ny}\right] \),

$$ \begin{array}{l}{E}_{\mathrm{noise}}\left(\Delta {\mathbf{P}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}\right)\\ {}=-{\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\cdot E\left\{\sum_{i=1}^n\sum_{j=1}^m{\left[\nabla {\xi}_g\left({x}_i^{\prime },{y}_j^{\prime}\right)\frac{\partial W}{\partial P}\right]}^T\left[\begin{array}{l} g\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\xi}_g\left({x}_i^{\prime },{y}_j^{\prime}\right)- f\left({x}_i,{y}_j\right)\\ {}-{\xi}_f\left({x}_i,{y}_j\right)-\left({\overline{g}}_n-{\overline{f}}_n\right)\end{array}\right]\right\}\\ {}=-{\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\cdot E\left\{\sum_{i=1}^n\sum_{j=1}^m{\left[\nabla {\xi}_G\left({x}_i^{\prime },{y}_j^{\prime}\right)\frac{\partial W}{\partial P}\right]}^T\cdot \left[{\xi}_G\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\Delta}_n\left({x}_i^{\prime },{y}_j^{\prime}\right)\right]\right\}\\ {}\kern1.5em -{\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\cdot E\left\{\sum_{i=1}^n\sum_{j=1}^m{\left[\left[{\Delta}_{n x},{\Delta}_{n y}\right]\frac{\partial W}{\partial P}\right]}^T\cdot \left[{\xi}_G\left({x}_i^{\prime },{y}_j^{\prime}\right)+{\Delta}_n\left({x}_i^{\prime },{y}_j^{\prime}\right)\right]\right\}\\ {}=-{\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\cdot E\left\{\sum_{i=1}^n\sum_{j=1}^m{\left[\nabla {\xi}_G\left({x}_i^{\prime },{y}_j^{\prime}\right)\frac{\partial W}{\partial P}\right]}^T\cdot {\Delta}_n\left({x}_i^{\prime },{y}_j^{\prime}\right)\right\}\\ {}\kern1.5em -{\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\cdot E\left\{\sum_{i=1}^n\sum_{j=1}^m{\left(\left[{\Delta}_{n x},{\Delta}_{n y}\right]\frac{\partial W}{\partial P}\right)}^T\cdot \left[{\xi}_G\left({x}_i^{\prime },{y}_j^{\prime}\right)\right]\right\}\\ {}\approx -{\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\cdot E\left\{\sum_{i=1}^n\sum_{j=1}^m{\left[\nabla {\xi}_G\left({x}_i^{\prime },{y}_j^{\prime}\right)\frac{\partial W}{\partial P}\right]}^T\cdot {\Delta}_n\left({x}_i^{\prime },{y}_j^{\prime}\right)\right\}\end{array} $$
(55)

The expectation of ΔP FA ‐ NR can be expressed as

$$ \begin{array}{l} E\left(\Delta {\mathbf{P}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}\right)={E}_{\mathrm{int}}\left(\Delta {\mathbf{P}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}\right)+{E}_{\mathrm{noise}}\left(\Delta {\mathbf{P}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}\right)\\ {}\kern8.5em =-{\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\cdot E\left\{\sum_{i=1}^n\sum_{j=1}^m{\left[\nabla G\left({x}_i^{\prime },{y}_j^{\prime}\right)\frac{\partial W}{\partial P}\right]}^T\cdot h\left({x}_i,{y}_j\right)\right\}\\ {}\kern10em -{\tilde{\mathbf{H}}}_{\mathrm{FA}\hbox{-} \mathrm{NR}}^{-1}\cdot E\left\{\sum_{i=1}^n\sum_{j=1}^m{\left[\nabla {\xi}_G\left({x}_i^{\prime },{y}_j^{\prime}\right)\frac{\partial W}{\partial P}\right]}^T\cdot {\Delta}_n\left({x}_i^{\prime },{y}_j^{\prime}\right)\right\}\end{array} $$
(56)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Jiang, Z., Tang, L. et al. Equal Noise Resistance of Two Mainstream Iterative Sub-pixel Registration Algorithms in Digital Image Correlation. Exp Mech 57, 979–996 (2017). https://doi.org/10.1007/s11340-017-0294-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-017-0294-y

Keywords

Navigation