Skip to main content

Advertisement

Log in

Experimental Characterization of Unimorph Shape Memory Polymer Actuators Incorporating Transverse Curvature in the Substrate

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Shape memory polymers (SMP) have the potential to be utilized as a lightweight, solid state actuator in modern reconfigurable structures including as a deployment system for satellite solar panels or morphing aircraft wings. This paper is primarily concerned with the use of Veriflex-S® shape memory polymer and bi-directional carbon-fiber-reinforced-polymer (CFRP) in a flexural unimorph actuator configuration. One of the major deficiencies of SMP unimorphs is the permanent set (unrecovered shape) after a single or multiple temperature cycle(s). The novel concept of incorporating transverse curvature in the CFRP substrate, similar to that of an extendable tape measurer, is proposed to improve the shape recovery by increasing the bending stiffness of the unimorph actuator to compensate for the lack of recovery of the SMP. A set of experiments was designed to investigate the influence of transverse curvature, the relative widths of SMP and CFRP substrates, and shape memory polymer thickness on actuator recoverability after multiple thermo-mechanical cycles. The performance of SMP unimorph actuators with varying degrees of transverse curvature were evaluated versus that of traditional SMP unimorphs incorporating a flat substrate. Digital image correlation was implemented to quantify the out-of-plane deflection of the unimorph composite actuators (UCAs) during the actuation cycle. Experimental results indicate that an actuator with transverse curvature significantly reduces the residual deformation by at least two orders of magnitude which could be further tailored to enhance the performance of shape memory polymers in reconfigurable arrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

ρ:

Substrate Radius of Curvature

c:

Polymer Width

CF:

Carbon Fiber

CFRP:

Carbon-Fiber-Reinforced Polymer

CTE:

Coefficient of Thermal Expansion

CV:

Coefficient of Variation

DIC:

Digital Image Correlation

L:

Actuator Length

MAV:

Micro Air Vehicle

s:

Substrate Width

SMP:

Shape Memory Polymer

t:

Polymer Thickness

Tg :

Glass Transition Temperature

UCA:

Unimorph Composite Actuator

u,v,w:

Lengthwise, Widthwise, and Vertical Displacements

x,y,z:

Lengthwise, Widthwise, and Vertical Coordinates

References

  1. Nettles D (2009) Thermomechanical characterization of a shape memory polymer based syntactic foam. 1–83

  2. Li G, Nettles D (2010) Thermomechanical characterization of a shape memory polymer based self-repairing syntactic foam. Polymer (Guildf) 51:755–762. doi:10.1016/j.polymer.2009.12.002

    Article  Google Scholar 

  3. Volk BL (2009) Thermomechanical characterization amd modeling of shape memory polymers. 124

  4. Liang F, Sivilli R, Gou J et al (2013) Electrical actuation and shape recovery control of shape-memory polymer nanocomposites. Int J Smart Nano Mater 4:167–178. doi:10.1080/19475411.2013.837846

    Article  Google Scholar 

  5. Lu H, Liang F, Gou J (2011) Nanopaper enabled shape-memory nanocomposite with vertically aligned nickel nanostrand: controlled synthesis and electrical actuation. Soft Matter 7:7416–7423. doi:10.1039/c1sm05765k

    Article  Google Scholar 

  6. Lu H, Gou J, Leng J, Du S (2011) Magnetically aligned carbon nanotube in nanopaper enabled shape-memory nanocomposite for high speed electrical actuation. Appl Phys Lett 98:174105. doi:10.1063/1.3585669

    Article  Google Scholar 

  7. Yu X, Zhou S, Zheng X et al (2009) A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity. Nanotechnology 20:235702. doi:10.1088/0957-4484/20/23/235702

    Article  Google Scholar 

  8. Schmidt AM (2006) Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol Rapid Commun 27:1168–1172. doi:10.1002/marc.200600225

    Article  Google Scholar 

  9. Razzaq MY, Anhalt M, Frormann L, Weidenfeller B (2007) Mechanical spectroscopy of magnetite filled polyurethane shape memory polymers. Mater Sci Eng A 471:57–62. doi:10.1016/j.msea.2007.03.059

    Article  Google Scholar 

  10. Beblo R V. (2010) Characterization and modeling of light activated shape memory polymer. 218

  11. Lendlein A, Jiang H, Junger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:695–697. doi:10.1038/nature03438.1

    Article  Google Scholar 

  12. Leng J, Zhang D, Liu Y et al (2010) Study on the activation of styrene-based shape memory polymer by medium-infrared laser light. Appl Phys Lett 96:111905. doi:10.1063/1.3353970

    Article  Google Scholar 

  13. Vaia R (2005) Remote-controlled actuators. Nature 4:429–430

    Article  Google Scholar 

  14. Maitland DJ, Metzger MF, Schumann D et al (2002) Photothermal properties of shape memory polymer micro-actuators for treating stroke. Lasers Surg Med 30:1–11. doi:10.1002/lsm.10007

    Article  Google Scholar 

  15. Otsuka K, Wayman CM (1998) Shape memory materials, 1st ed. 284

  16. LaCroix BW, Ifju PG (2012) Utilization and performance enhancements of multiple piezoelectric actuators on micro air vehicles. AIAA Aerosp. Sci. Meet. American Institute of Aeronautics and Astronautics, Nashville, pp 1–14

    Google Scholar 

  17. Lacroix BW, Ifju PG (2013) Macro fiber composites and substrate materials for MAV Wing Morphing. Soc. Exp. Mech. Society of Experimental Mechanics, Lombard, pp 1–13

    Google Scholar 

  18. Yakacki CM, Shandas R, Lanning C et al (2007) Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 28:2255–2263. doi:10.1016/j.biomaterials.2007.01.030

    Article  Google Scholar 

  19. Thill C, Etches J, Bond I, et al (2008) Morphing skins. Aeronaut J 1–23

  20. Gross KE (2008) Mechanical characterization of shape memory polymers to assess candidacy as morphing aircraft skin. University of Pittsburgh

  21. Yin W, Liu J, Leng J (2009) Deformation analysis of shape memory polymer for morphing wing skin under airflow. Front Mech Eng Chin 4:447–449. doi:10.1007/s11465-009-0062-5

    Article  Google Scholar 

  22. Joo J, Smyers B, Beblo R et al (2011) Load-bearing multi-functional structure with direct thermal harvesting for thermally activated reconfigurable wing design. Int. Conf. Compos. Mater. Society of Composite Materals, Jeju, pp 1–6

    Google Scholar 

  23. Ko S-H, Bae J-S, Rho J-H (2014) Development of a morphing flap using shape memory alloy actuators: the aerodynamic characteristics of a morphing flap. Smart Mater Struct 23:074015. doi:10.1088/0964-1726/23/7/074015

    Article  Google Scholar 

  24. Rauscher SG (2008) Testing and analysis of shape-memory polymers for morphing aircraft skin application by by. 160

  25. Li G, Asce M, Xu T (2011) Thermomechanical characterization of shape memory polymer – based self-healing syntactic foam sealant for expansion joints. J Transp Eng 805–814. doi: 10.1061/(ASCE)TE.1943-5436.0000279

  26. Nji J, Li G (2010) A biomimic shape memory polymer based self-healing particulate composite. Polymer (Guildf) 51:6021–6029. doi:10.1016/j.polymer.2010.10.021

    Article  Google Scholar 

  27. Li G, John M (2008) A self-healing smart syntactic foam under multiple impacts. Compos Sci Technol 68:3337–3343. doi:10.1016/j.compscitech.2008.09.009

    Article  Google Scholar 

  28. Fulcher JT, Karaca HE, Tandon GP, Lu YC (2012) Thermomechanical and shape memory properties of thermosetting shape memory polymer under compressive loadings. J Appl Polym Sci. doi:10.1002/app.38791

    Google Scholar 

  29. Fulcher JT (2011) Mechanical characterizations of environmentally conditioned shape memory polymers for reconfigurable aerospace structures. 65

  30. Fulcher JT, Karaca HE, Tandon GP et al (2011) Multiscale characterization of water-,oil-,and uv-conditioned shape-memory polymer under compression. In: Proulx T (ed) Mechanics of time-dependent materials and processes in conventional and multifunctional materials. Society of Experimental Mechanics, Uncasville, pp 97–103

    Google Scholar 

  31. Fulcher JT, Lu YC, Tandon GP, Foster DC (2010) Thermomechanical characterization of shape memory polymers using high temperature nanoindentation. Polym Test 29:544–552. doi:10.1016/j.polymertesting.2010.02.001

    Article  Google Scholar 

  32. Nahid MNH, Wahab MAA, Lian K (2011) Degradation of shape memory polymer due to water and diesel fuels. In: Proulx T (ed) Mechanics of time-dependent materials and processes in conventional and multifunctional materials. Society of Experimental Mechanics, Uncasville, pp 37–48

    Google Scholar 

  33. McClung AJW, Tandon GP, Goecke KE, Baur JW (2011) Non-contact technique for characterizing full-field surface deformation of shape memory polymers at elevated and room temperatures. Polym Test 30:140–149. doi:10.1016/j.polymertesting.2010.11.010

    Article  Google Scholar 

  34. McClung AJW, Ruggles-Wrenn MB (2009) Strain rate dependence and short-term relaxation behavior of a thermoset polymer at elevated temperature: experiment and modeling. J Press Vessel Technol 131:031405. doi:10.1115/1.3110025

    Article  Google Scholar 

  35. McClung AJW, Tandon GP, Baur JW (2011) Fatigue cycling of shape memory polymer resin. In: Proulx T (ed) Mechanics of time-dependent materials and processes in conventional and multifunctional materials. Springer New York, New York, pp 119–127

    Google Scholar 

  36. McClung AJW, Tandon GP, Baur JW (2011) Strain rate- and temperature-dependent tensile properties of an epoxy-based, thermosetting, shape memory polymer (Veriflex-E). Mech Time-Dependent Mater 16:205–221. doi:10.1007/s11043-011-9148-7

    Article  Google Scholar 

  37. McClung AJW, Tandon GP, Baur JW (2011) Deformation rate-, hold time-, and cycle-dependent shape-memory performance of Veriflex-E resin. Mech Time-Dependent Mater 17:39–52. doi:10.1007/s11043-011-9157-6

    Article  Google Scholar 

  38. Yu K, McClung AJW, Tandon GP et al (2014) A thermomechanical constitutive model for an epoxy based shape memory polymer and its parameter identifications. Mech Time-Dependent Mater 18:453–474. doi:10.1007/s11043-014-9237-5

    Article  Google Scholar 

  39. Lu H (2013) State diagram of phase transition temperatures and solvent-induced recovery behavior of shape-memory polymer. J Appl Polym Sci 127:2896–2904. doi:10.1002/app.37683

    Article  Google Scholar 

  40. Lu H, Liu Y, Gou J et al (2011) Surface coating of multi-walled carbon nanotube nanopaper on shape-memory polymer for multifunctionalization. Compos Sci Technol 71:1427–1434. doi:10.1016/j.compscitech.2011.05.016

    Article  Google Scholar 

  41. Lu H, Yu K, Liu Y, Leng J (2010) Sensing and actuating capabilities of a shape memory polymer composite integrated with hybrid filler. Smart Mater Struct 19:065014. doi:10.1088/0964-1726/19/6/065014

    Article  Google Scholar 

  42. Lu H, Liu Y, Leng J, Du S (2010) Qualitative separation of the physical swelling effect on the recovery behavior of shape memory polymer. Eur Polym J 46:1908–1914. doi:10.1016/j.eurpolymj.2010.06.013

    Article  Google Scholar 

  43. Chowdhury AMS, Schmidt C, Neuking K, Eggeler G (2013) Comparative studies on the accumulation of strain and recovery ratio of Veriflex(R), a shape-memory polymer for a high strain (isin m = 210 %): Atomic force microscopic experiments. High Perform Polym 26:20–26. doi:10.1177/0954008313494907

    Article  Google Scholar 

  44. Chowdhury AMS, Schmidt C, Neuking K, Eggeler G (2013) Comparative studies on the accumulation of strain and recovery ratio of Veriflex(R), a shape-memory polymer: infrared and laser experiments. High Perform Polym 25:886–893. doi:10.1177/0954008313487929

    Article  Google Scholar 

  45. Liu Y, Gall K, Dunn ML et al (2006) Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling. Int J Plast 22:279–313. doi:10.1016/j.ijplas.2005.03.004

    Article  MATH  Google Scholar 

  46. Cortes P, Terzak J, Kubas G et al (2014) The morphing properties of a vascular shape memory composite. Smart Mater Struct 23:015018. doi:10.1088/0964-1726/23/1/015018

    Article  Google Scholar 

  47. Beblo R, Gross K, Mauck Weiland L (2010) Mechanical and curing properties of a styrene-based shape memory polymer. J Intell Mater Syst Struct 21:677–683. doi:10.1177/1045389X10364860

    Article  Google Scholar 

  48. Beblo R, Weiland LM (2008) Strain induced anisotropic properties of shape memory polymer. Smart Mater Struct 17:055021. doi:10.1088/0964-1726/17/5/055021

    Article  Google Scholar 

  49. Atli B, Gandhi F, Karst G (2008) Thermomechanical characterization of shape memory polymers. J Intell Mater Syst Struct 20:87–95. doi:10.1177/1045389X07086689

    Article  Google Scholar 

  50. Carrell J, Tate D, Wang S, Zhang H-C (2011) Shape memory polymer snap-fits for active disassembly. J Clean Prod 19:2066–2074. doi:10.1016/j.jclepro.2011.06.027

    Article  Google Scholar 

  51. Lan X, Liu Y, Lv H et al (2009) Fiber reinforced shape-memory polymer composite and its application in a deployable hinge. Smart Mater Struct 18:024002. doi:10.1088/0964-1726/18/2/024002

    Article  Google Scholar 

  52. Leng J, Lu H, Liu Y, et al (2009) Shape-memory polymers — a class of novel smart materials. 34

  53. Voit W, Ware T, Dasari RR et al (2010) High-strain shape-memory polymers. Adv Funct Mater 20:162–171. doi:10.1002/adfm.200901409

    Article  Google Scholar 

  54. Monkman G (2000) Advances in shape memory polymer actuation. Mechatronics 10:489–498. doi:10.1016/S0957-4158(99)00068-9

    Article  Google Scholar 

  55. Schmidt C, Neuking K, Eggeler G (2008) Functional fatigue of shape memory polymers. Adv Eng Mater 10:922–927. doi:10.1002/adem.200800213

    Article  Google Scholar 

  56. Gall K, Mikulas M, Munshi NA et al (2000) Carbon fiber reinforced shape memory polymer composites. J Intell Mater Syst Struct 11:877–886. doi:10.1106/EJGR-EWNM-6CLX-3X2M

    Article  Google Scholar 

  57. Beloshenko VA, Varyukhin VN, Voznyak YV (2005) The shape memory effect in polymers. Russ Chem Rev 74:265–283. doi:10.1070/RC2005v074n03ABEH000876

    Article  Google Scholar 

  58. Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem 17:1543. doi:10.1039/b615954k

    Article  Google Scholar 

  59. Vaia R, Baur J (2008) Materials science: adaptive composites. Science 319:420–421. doi:10.1126/science.1152931

    Article  Google Scholar 

  60. Cantrell JT, LaCroix BW, Ifju PG (2013) Passive roll compensation on micro air vehicles with perimeter reinforced membrane wings. 51st AIAA Aerosp. Sci. Meet. American Institute of Aeronautics and Astronautics, Grapevine, Texas, pp 1–12

  61. Ifju PG, Jenkins DA, Waszak MR, et al (2002) Flexible-wing-based micro air vehicles. J Am Inst Aeronaut Astronaut 1–13

  62. Shyy W, Ifju P, Viieru D (2005) Membrane wing-based micro air vehicles. Appl Mech Rev 58:283. doi:10.1115/1.1946067

    Article  Google Scholar 

  63. Stanford B, Ifju P (2008) Aeroelastic topology optimization of membrane structures for micro air vehicles. Struct Multidiscip Optim 38:301–316. doi:10.1007/s00158-008-0292-x

    Article  Google Scholar 

  64. Albertani RJ, Stanford B, DeLoach R et al (2008) Wind-tunnel testing and modeling of a micro air vehicle with flexible wings. J Aircr 45:1025–1032. doi:10.2514/1.33338

    Article  Google Scholar 

  65. Ifju P, Lee K, Albertani R et al (2008) Bendable wing for micro air vehicle. 2:11

  66. Jagdale V, Stanford B, Claxton D et al (2006) Experimental characterization of load stiffening wing for small UAV. Soc Exp Mech 1–7

  67. Johnson B, Claxton D, Stanford B, et al (2006) Development of a composite bendable-wing micro air vehicle. J Am Inst Aeronaut Astronaut 1–16

  68. Sutton MA, Turner JL, Bruck HA, Chae TA (1991) Full-field representation of discretely sampled surface deformation for displacement and strain analysis. Exp Mech 31:168–177

    Article  Google Scholar 

  69. Sutton MA (2008) Springer handbook of experimental solid mechanics. 565–600

  70. Sutton MA, Orteu JJ, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. 342

  71. Abudaram YJ, Ifju PG, Hubner JP, Ukeiley L (2013) Controlling pretension of silicone membranes on micro air vehicle wings. J Strain Anal Eng Des 49:161–170. doi:10.1177/0309324713490926

    Article  Google Scholar 

  72. Yamamoto N, Gdoutos E, Toda R et al (2014) Thin films with ultra-low thermal expansion. Adv Mater 26:3076–3080. doi:10.1002/adma.201304997

    Article  Google Scholar 

  73. Gdoutos E, Shapiro AA, Daraio C (2013) Thin and thermally stable periodic metastructures. Exp Mech 53:1735–1742. doi:10.1007/s11340-013-9748-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Cantrell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cantrell, J.T., Ifju, P.G. Experimental Characterization of Unimorph Shape Memory Polymer Actuators Incorporating Transverse Curvature in the Substrate. Exp Mech 55, 1395–1409 (2015). https://doi.org/10.1007/s11340-015-0035-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-015-0035-z

Keywords

Navigation