Skip to main content
Log in

On the Occurrence of Portevin–Le Châtelier Instabilities in Ultrafine-Grained 5083 Aluminum Alloys

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The Portevin–Le Châtelier (PLC) instability is commonly observed in Al–Mg alloys and is manifested in serrated flow within the stress–strain response. We investigate the persistence of this instability with reduction in grain size by studying an ultrafine-grained (ufg) aluminum alloy (Al5083) and a conventional grain size Al5083. Micro-scale tensile tests combined with digital image correlation (DIC) reveal strength anisotropy and heterogeneity of the deformation in the three material directions (extrusion, rolled, and transverse). For the same applied displacement rate, the PLC effect in ufg-Al5083 is observed only over a small strain range immediately following the yield, while the coarse-grained Al5083 exhibits serrated flow over nearly the entire plastic strain range. These observations are explained using the stability analysis of Hähner (Acta Mater 45:3695–3707, 1997), and implications for nanocrystalline (nc) alloys are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Witkin DB, Lavernia EJ (2006) Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog Mater Sci 51:1–60. doi:10.1016/j.pmatsci.2005.04.004

    Article  Google Scholar 

  2. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–189. doi:10.1016/S0079-6425(99)00007-9

    Article  Google Scholar 

  3. Newbery AP, Nutt SR, Lavernia EJ (2006) Multi-scale al 5083 for military vehicles with improved performance. JOM 58:56–61. doi:10.1007/s11837-006-0216-4

    Article  Google Scholar 

  4. Ye J, Han BQ, Lee Z, Ahn B, Nutt SR, Schoenung JM (2005) A tri-modal aluminum based composite with super-high strength. Scr Mater 53:481–486. doi:10.1016/j.scriptamat.2005.05.004

    Article  Google Scholar 

  5. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556. doi:10.1016/j.pmatsci.2005.08.003

    Article  Google Scholar 

  6. Wang YM, Ma E (2004) Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater 52:1699. doi:10.1016/j.actamat.2003.12.022

    Article  Google Scholar 

  7. Robinson JM, Shaw MP (1994) Microstructural and mechanical influences on dynamic strain aging phenomena. Int Mater Rev 39:113–122

    Google Scholar 

  8. Zaiser M, Hähner P (1997) A unified description of strain-rate softening instabilities. Mater Sci Eng A 238:399. doi:10.1016/S0921-5093(97)00468-1

    Article  Google Scholar 

  9. Zaiser M, Haehner P (1997) Oscillatory modes of plastic deformation: theoretical concepts. Physica Status Solidi (B). Basin Res 199:267–330

    Google Scholar 

  10. Hähner P (1997) On the critical conditions of the Portevin—Le-Chatelier effect. Acta Mater 45:3695–3707. doi:10.1016/S1359-6454(97)00066-9

    Article  Google Scholar 

  11. Brindley BJ, Worthington PJ (1969) Serrated yielding in aluminum-3% magnesium. Acta Metall 17:1357–1361. doi:10.1016/0001-6160(69)90153-9

    Article  Google Scholar 

  12. Cheng X-M, Morris JG (2000) The anisotropy of the portevin-le chatelier effect in aluminum alloys. Scr Mater 43:651–658. doi:10.1016/S1359-6462(00)00474-7

    Article  Google Scholar 

  13. Jiang H, Zhang Q, Chen X, Chen Z, Jiang Z, Wu X, Fan J (2007) Three types of portevin–le chatelier effects: experiment and modelling. Acta Mater 55:2219. doi:10.1016/j.actamat.2006.10.029

    Article  Google Scholar 

  14. Kubin LP, Estrin Y (1990) Evolution of dislocation densities and the critical conditions for the portevin–le chatelier effect. Acta Metall Mater 38:697–708. doi:10.1016/0956-7151(90)90021-8

    Article  Google Scholar 

  15. Dziadon A (1996) The effect of grain size on serrated flow in nickel. Scr Mater 34:375–380. doi:10.1016/S0956-716X(95)00537-6

    Article  Google Scholar 

  16. Bouabdallah K, Balland P, Tabourot L, Vacher P (2007) Contribution of kinematic field measurements to the modelling of the portevin–le cha?Telier effect by the image correlation method. J Strain Anal Eng Des 42:589–594. doi:10.1243/03093247JSA312

    Article  Google Scholar 

  17. Tong W, Tao H, Zhang N, Hector LG Jr (2005) Time-resolved strain mapping measurements of individual portevin–le chatelier deformation bands. Scr Mater 53:87–92. doi:10.1016/j.scriptamat.2005.03.020

    Article  Google Scholar 

  18. Besnard G, Hild F, Roux S (2006) “Finite-element” displacement fields analysis from digital images: application to Portevin–Le Châtelier bands. Exp Mech 46:789–803. doi:10.1007/s11340-006-9824-8

    Article  Google Scholar 

  19. Chu TC, Ranson WF, Sutton MA (1985) Applications of digital-image-correlation techniques to experimental mechanics. Exp Mech 25:232. doi:10.1007/BF02325092

    Article  Google Scholar 

  20. Park KT, Park JH, Lee YS, Nam WJ (2005) Microstructures developed by compressive deformation of coarse grained and ultrafine grained 5083 al alloys at 77 k and 298 k. Mater Sci Eng A 408:102–109. doi:10.1016/j.msea.2005.07.040

    Article  Google Scholar 

  21. Soer WA, De Hosson JTM, Minor AM, Morris JW Jr, Stach EA (2004) Effects of solute mg on grain boundary and dislocation dynamics during nanoindentation of al-mg thin films. Acta Mater 52:5783–5790. doi:10.1016/j.actamat.2004.08.032

    Article  Google Scholar 

  22. Lebyodkin M, Dunin-Barkowskii L, Bréchet Y, Estrin Y, Kubin LP (2000) Spatio-temporal dynamics of the portevin–le chatelier effect: experiment and modelling. Acta Mater 48:2529–2541. doi:10.1016/S1359-6454(00)00067-7

    Article  Google Scholar 

  23. Bharathi MS, Rajesh S, Ananthakrishna G (2003) A dynamical model for the portevin–le chatelier bands. Scr Mater 48:1355. doi:10.1016/S1359-6462(02)00653-X

    Article  Google Scholar 

  24. Kok S, Beaudoin AJ, Tortorelli DA, Lebyodkin M, Kubin L, Fressengeas C (2003) Simulation of the portevin–le chatelier effect using polycrystal plasticity. J Phys IV: JP 105:191. doi:10.1051/jp4:20030187

    Article  Google Scholar 

  25. Kok S, Bharathi MS, Beaudoin AJ, Fressengeas C, Ananthakrishna G, Kubin LP, Lebyodkin M (2003) Spatial coupling in jerky flow using polycrystal plasticity. Acta Mater 51:3651–3662. doi:10.1016/S1359-6454(03)00114-9

    Article  Google Scholar 

  26. Mesarovic S (1995) Dynamic strain aging and plastic instabilities. J Mech Phys Solids 43:671–700. doi:10.1016/0022-5096(95)00010-G

    Article  MATH  MathSciNet  Google Scholar 

  27. Yang SY, Tong W (2006) A perturbation analysis of the unstable plastic flow pattern evolution in an aluminum alloy. Int J Solids Struct 43:5931. doi:10.1016/j.ijsolstr.2005.07.041

    Article  MATH  Google Scholar 

  28. Rizzi E, Haehner P (2004) On the portevin–le chatelier effect: theoretical modeling and numerical results. Int J Plast 20:121–165. doi:10.1016/S0749-6419(03)00035-4

    Article  MATH  Google Scholar 

  29. Wei Q, Cheng S, Ramesh KT, Ma E (2004) Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: Fcc versus bcc metals. Mater Sci Eng A 381:71. doi:10.1016/j.msea.2004.03.064

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. E.J. Lavernia for providing the material samples and for the TEM images of ufg-Al5083. SPJ, BC and KTR acknowledge the financial support received from the Army Research Laboratory (W911NF-06-2-0006). CE and KJH acknowledge the financial support received from AFOSR under the MEANS-2 Program (Grant No. FA9550-05-1-0173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Joshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, S.P., Eberl, C., Cao, B. et al. On the Occurrence of Portevin–Le Châtelier Instabilities in Ultrafine-Grained 5083 Aluminum Alloys. Exp Mech 49, 207–218 (2009). https://doi.org/10.1007/s11340-008-9208-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-008-9208-3

Keywords

Navigation