Skip to main content

Deformation and Failure of an Al-Mg Alloy Investigated Through Multiscale Microstructural Models

  • Chapter
Light Metals 2015
  • 44 Accesses

Abstract

The microscale deformation of an Al-Mg alloy with a bimodal grain size distribution, consisting of coarse grains (CGs) and ultrafine grains (UFGs) is studied through finite element methods. Procedurally generated models are created to characterize the behavior of this micro structure at different scales. The mechanical response of individual grains is represented through crystal plasticity laws, which include accommodations for solute and grain size strengthening effects. These effects are quantified through multiscale models allowing for experimental calibration. Additionally, the behavior of grain boundaries is included through cohesive interface models. Using these techniques, grain scale deformation is characterized, load distribution between the two phases is examined, and the roles of crystal anisotropy and interface accommodation are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 289.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee, Z., Witkin, D. B., Radmilovic, V., Lavernia, E. J., and Nutt, S. R. Bimodal micro structure and deformation of cryomilled bulk nanocrystalline Al-7.5Mg alloy. Mater. Sci. Eng. A 410–411, 462–467 (2005).

    Article  Google Scholar 

  2. Witkin, D., Lee, Z., Rodriguez, R., Nutt, S., and Lavernia, E. Al-Mg alloy engineered with bimodal grain size for high strength and increased ductility. Scr. Mater. 49, 297–302 (2003).

    Article  Google Scholar 

  3. Han, B. Q., Ye, J., Tang, F., Schoenung, J., and Lavernia, E. J. Processing and behavior of nanostructured metallic alloys and composites by cryomilling. J. Mater. Sci. 42, 1660–1672 (2007).

    Article  Google Scholar 

  4. Topping, T. D., Ahn, B., Li, Y., Nutt, S. R., and Lavernia, E. J. Influence of Process Parameters on the Mechanical Behavior of an Ultrafine-Grained Al Alloy. Metall. Mater. Trans. A 43, 505–519 (2011).

    Article  Google Scholar 

  5. Witkin, D. B., and Lavernia, E. J. Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog. Mater. Sci. 51, 1–60(2006).

    Google Scholar 

  6. Youssef, K. M., Scattergood, R. O., Murty, K. L., and Koch, C. C. Nanocrystalline Al-Mg alloy with ultrahigh strength and good ductility. Scr. Mater. 54, 251–256 (2006).

    Article  Google Scholar 

  7. Magee, A., Ladani, L., Topping, T. D., and Lavernia, E. J. Effects of tensile test parameters on the mechanical properties of a bimodal Al-Mg alloy. Acta Mater. 60, 5838–5849 (2012).

    Article  Google Scholar 

  8. Ye, R. Q., Han, B. Q., and Lavernia, E. J. Simulation of Deformation and Failure Process in Bimodal Al Alloys. Metall. Mater. Trans. A36, 1833–1840 (2005).

    Google Scholar 

  9. Nelson, S., Ladani, L., Topping, T., and Lavernia, E. Fatigue and monotonie loading crack nucleation and propagation in bimodal grain size aluminum alloy. Acta Mater. 59, 3550–3570 (2011).

    Article  Google Scholar 

  10. Wei, Y., and Anand, L. Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals. J. Mech. Phys. Solids 52, 2587–2616 (2004).

    Article  Google Scholar 

  11. Shaban, A., Ma, A., and Hartmaier, A. Polycrystalline material deformation modeling with grain boundary sliding and damage accumulation. ECF18, Dresden2010 1–8 (2013).

    Google Scholar 

  12. Bower, A. F., and Wininger, E. A two-dimensional finite element method for simulating the constitutive response and micro structure of polycrystals during high temperature plastic deformation. J. Mech. Phys. Solids 52, 1289–1317 (2004).

    Article  Google Scholar 

  13. Fu, H.-H., Benson, D. J., and André Meyers, M. Computational description of nanocrystalline deformation based on crystal plasticity. Acta Mater. 52, 4413–4425 (2004).

    Article  Google Scholar 

  14. Schwaiger, R., Moser, B., Dao, M., Chollacoop, N., and Suresh, S. Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159–5172 (2003).

    Article  Google Scholar 

  15. Liu, Y., Zhou, J., and Hui, D. A strain-gradient plasticity theory of bimodal nanocrystalline materials with composite structure. Compos. Part B Eng. 43, 249–254 (2012).

    Article  Google Scholar 

  16. Warner, D. H., Sansoz, F., and Molinari, J. F. Atomistic based continuum investigation of plastic deformation in nanocrystalline copper. Int. J. Plast. 22, 754–774 (2006).

    Article  Google Scholar 

  17. Wu, B., Liang, L., Ma, H., and Wei, Y. A trans-scale model for size effects and intergranular fracture in nanocrystalline and ultra-fine polycrystalline metals. Comput. Mater. Sci. 57, 2–7 (2012).

    Article  Google Scholar 

  18. Magee, A. C., and Ladani, L. Simulation of Grain Boundary Plasticity, Crack Initiation, and Crack Propagation in an Al-Mg Alloy with Bimodal Grain Size. Submitt. to Eur. J. Mech.-A/Solids (2014).

    Google Scholar 

  19. Marin, E. On the formulation of a crystal plasticity model. (2006).

    Book  Google Scholar 

  20. Pouillier, E., Gourgues, A.-F., Tanguy, D., and Busso, E. P. A study of intergranular fracture in an aluminium alloy due to hydrogen embrittlement. Int. J. Plast. 34, 139–153 (2012).

    Article  Google Scholar 

  21. ASM International. Atlas of stress-strain curves. (ASM International, 2002).

    Google Scholar 

  22. Kaufman, J. G. Properties of Aluminum Alloys. (ASM International, 1999).

    Google Scholar 

  23. Simmons, G., and Wang, H. Single crystal elastic constants and calculated aggregate properties. (MIT Press, 1965).

    Google Scholar 

  24. Topping, T. D., Hu, T., Manigandan, K., Srivatsan, T. S., and Lavernia, E. J. Quasi-static deformation and final fracture behaviour of aluminium alloy 5083: influence of cryomilling. Philos. Mag. 93, 899–921 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Magee, A.C., Ladani, L. (2015). Deformation and Failure of an Al-Mg Alloy Investigated Through Multiscale Microstructural Models. In: Hyland, M. (eds) Light Metals 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-48248-4_42

Download citation

Publish with us

Policies and ethics