Skip to main content

Advertisement

Log in

Grain Boundary Sliding and Strain Rate Sensitivity of Coarse and Fine/Ultrafine Grained 5083 Aluminum Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The viscoplastic behavior of coarse and bimodal fine/ultrafine grained (F/UFG) Al5083 alloy was investigated between 20 °C and 200 °C through tensile tests at various strain rates, and stress relaxation tests to deduce the strain rate sensitivity (SRS). The plastic strain fields were measured by correlation of SEM images. In the F/UFG material at high temperature, very high strains were measured in shear bands which sometimes crossed the whole gage width and exhibited intensive grain boundary sliding (GBS). Both the SRS and ductility rose with the temperature, and as the strain rate decreased, mainly due to a rising contribution of GBS, which accommodated a much larger fraction of the global strain in the F/UFG material. The boundary between the temperature–strain rate domains where grain refinement led either to strengthening or to softening was determined. Finite element simulations of tension and relaxation tests with viscoplastic grains and sliding grain boundaries captured the macro-scale behavior of the F/UFG material. It also provided some insight into the mechanisms of correlated and cooperative GBS and grain rotation along percolation paths (both inter and intragranular), probably, responsible for macro shear banding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Y. Huang, T. G. Langdon: Mater. Today, 2013, vol 16, pp. 85–93

    Article  CAS  Google Scholar 

  2. I. Sabirov, M. R. Barnett, Y. Estrin, P. D. Hodgson: Scripta Mater., 2009, vol. 61, pp. 181–184

    Article  CAS  Google Scholar 

  3. K. V. Ivanov, E. V. Naydenkin: IOP Conf. Ser. Mater. Sci. Eng., 2014, vol. 63, pp. 1–10

    Article  Google Scholar 

  4. R. C. Gifkins, A. Gittins, R. L. Bell, T. G. Langdon: J. Mater. Sci., 1968, vol. 3, pp. 306–313

    Article  CAS  Google Scholar 

  5. A. Arieli, A. K. Mukherjee: Mater. Sci. Eng., 1980, vol. 45, pp. 61–70

    Article  Google Scholar 

  6. Y. G. Ko, D. H. Shin, K. T. Park, C. S. Lee: Mater. Sci. Eng. A, 2007, vol. 448–451, pp. 756–760

    Article  Google Scholar 

  7. K.-T. Park, D.Y. Hwang, S.-Y. Chang, D. H. Shin: Metall. Mater. Trans. A, 2002, vol. 33, pp. 2859–67

    Article  CAS  Google Scholar 

  8. K. T. Park, H. J. Lee, C. S. Lee, B. D. Ahn, H. S. Cho, D. H. Shin: Mater. Trans., 2004, vol. 45, pp. 958–63

    Article  CAS  Google Scholar 

  9. S. Y. Chang, L. JungGuk, K. T. Park, S. DongHyuk, J. G. Lee, K. T. Park, D. H. Shin: Mater. Trans., 2001, vol. 42, pp. 1074–1080

    Article  CAS  Google Scholar 

  10. 10. R. Kapoor, J. K. Chakravartty: Acta Mater., 2007, vol. 55, pp. 5408–18

    Article  CAS  Google Scholar 

  11. R. Raj and M. F. Ashby: Metall. Trans., 1971, vol. 2, pp. 1113–1127

    Article  Google Scholar 

  12. M. F. Ashby, R. A. Verrall: Acta Metall., 1973, vol. 21, pp. 149-163

    Article  CAS  Google Scholar 

  13. F. Crossman, M. F. Ashby: Acta Metall., 1975 Vol. 23, pp. 425–440

    Article  CAS  Google Scholar 

  14. V. Tvergaard: J. Mech. Phys. Solids, 1985, vol. 33, pp. 447–469

    Article  Google Scholar 

  15. V. Tvergaard: Rev. Phys. Appl., 1988, vol. 23, pp. 595–604

    Article  Google Scholar 

  16. K. J. Hsia, D. M. Parks, A. S. Argon: Mech. Mater., 1991, vol. 11 pp. 43–62

    Article  Google Scholar 

  17. P. Onck, E. Van der Giessen: Int. J. Solids Struct., 1997, vol. 34 pp. 703–726

    Article  Google Scholar 

  18. A. F. Bower, E. Wininger:, J. Mech. Phys. Solids, 2004, vol. 52, pp.1289–1317

    Article  Google Scholar 

  19. S. Agarwal, C. L. Briant, P. E. Krajewski, A. F. Bower, E. M. Taleff: J. Mater. Eng. Perform., 2007, vol. 16, pp. 170–178

    Article  CAS  Google Scholar 

  20. N. Du, A. F. Bower, P. E. Krajewski, E. M. Taleff: Mater. Sci. Eng. A, 2008, vol 494, pp. 86–91

    Article  Google Scholar 

  21. A. Goyal, Mechanical behaviour of ultra-fine grain Al 5083 alloy: Analysis and modelling of the role of grain boundaries to overall plastic deformation., Ph.D. Thesis, Ecole Polytechnique, Palaiseau, France, 2018

  22. Y. Qi and P. E. Krajewski: Acta Mater., 2007, vol. 55, pp. 1555–1563

    Article  CAS  Google Scholar 

  23. N. Du, Y. Qi, P. E. Krajewski, A. F. Bower: Metall. Mater. Trans. A, 2011, vol. 42, pp. 651–659

    Article  Google Scholar 

  24. D. H. Warner, F. Sansoz, J. F. Molinari: Int. J. Plast., 2006, vol. 22, pp.754–774

    Article  CAS  Google Scholar 

  25. L. Allais, M. Bornert, T. Bretheau, D. Caldemaison: Acta Metall. Mater., 1994, vol. 42, pp. 3865–80

    Article  CAS  Google Scholar 

  26. D. Lee: Metall. Trans., 1971, vol. 2, pp. 1245–48

    Article  Google Scholar 

  27. R. Kapoor, C. Gupta, G. Sharma, J. K. Chakravartty: Scripta Mater., 2005, vol. 53 pp. 1389–93

    Article  CAS  Google Scholar 

  28. R. L. Bell, C. Graeme-Barber, T. G. Langdon: Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 1821-23

    CAS  Google Scholar 

  29. Fracsima, Disroc, a Finite Element Code for modelling Thermo-Hydro-Mechanical processes in fractures porous media. 2016. http://www.fracsima.com/DISROC/Disroc.html.

  30. Yu. Ivanisenko, N.A. Enikeev, K. Yang, A. Smoliakov, V.P. Soloviev, H. Fecht: Mater. Sci. & Eng. A, 2016, vol. 668, pp. 255–262

    Article  CAS  Google Scholar 

  31. E. Izadi, A. Darbal, R. Sarkar, J. Rajagopalan: Mater. Design, 2017, vol. 113, pp. 186–194

    Article  CAS  Google Scholar 

  32. F. Mompiou and M. Legros: Scripta Mater., 2015, vol. 99, pp. 5–8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

An ECAP facility of LEM3 laboratory in Metz was used to produce the UFG material, under the supervision of Dr. J.J. Fundenberger, who is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Doquet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 30, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyal, A., Doquet, V. & Pouya, A. Grain Boundary Sliding and Strain Rate Sensitivity of Coarse and Fine/Ultrafine Grained 5083 Aluminum Alloys. Metall Mater Trans A 51, 1109–1122 (2020). https://doi.org/10.1007/s11661-019-05583-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05583-5

Navigation