Skip to main content

Advertisement

Log in

ImmunoPET: harnessing antibodies for imaging immune cells

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Dramatic, but uneven, progress in the development of immunotherapies for cancer has created a need for better diagnostic technologies including innovative non-invasive imaging approaches. This review discusses challenges and opportunities for molecular imaging in immuno-oncology and focuses on the unique role that antibodies can fill. ImmunoPET has been implemented for detection of immune cell subsets, activation and inhibitory biomarkers, tracking adoptively transferred cellular therapeutics, and many additional applications in preclinical models. Parallel progress in radionuclide availability and infrastructure supporting biopharmaceutical manufacturing has accelerated clinical translation. ImmunoPET is poised to provide key information on prognosis, patient selection, and monitoring immune responses to therapy in cancer and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Atkins MB et al (1999) High-dose recomginant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17:2105–2116

    Article  CAS  PubMed  Google Scholar 

  2. Rosenberg SA et al (1988) Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med 319(25):1676–80

    Article  CAS  PubMed  Google Scholar 

  3. Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541(7637):321–330

    Article  CAS  PubMed  Google Scholar 

  4. Fridman WH et al (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12(4):298–306

    Article  CAS  PubMed  Google Scholar 

  5. Galon J et al (2014) Towards the introduction of the “Immunoscore” in the classification of malignant tumours. J Pathol 232(2):199–209

    Article  CAS  PubMed  Google Scholar 

  6. Koelzer VH et al (2019) Precision immunoprofiling by image analysis and artificial intelligence. Virchows Arch 474(4):511–522

    Article  PubMed  Google Scholar 

  7. Papalexi E, Satija R (2018) Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol 18(1):35–45

    Article  CAS  PubMed  Google Scholar 

  8. McCracken MN et al (2016) Advances in PET Detection of the antitumor T cell response. Adv Immunol 131:187–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim W et al (2016) [18F]CFA as a clinically translatable probe for PET imaging of deoxycytidine kinase activity. Proc Natl Acad Sci U S A 113(15):4027–4032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Namavari M et al (2011) Synthesis of 2’-deoxy-2’-[18F]fluoro-9-beta-D-arabinofuranosylguanine: a novel agent for imaging T-cell activation with PET. Mol Imaging Biol 13(5):812–818

    Article  PubMed  Google Scholar 

  11. Wagstaff J et al (1981) A method for following human lymhocyte traffic using indium-111 oxine labelilling. Clin Exp Immunol 43:435–442

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sato N et al (2020) In vivo tracking of adoptively transferred natural killer cells in rhesus macaques using (89)zirconium-oxine cell labeling and PET imaging. Clin Cancer Res 26(11):2573–2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Keu KV et al (2017) Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med 9:eeag2196

    Article  Google Scholar 

  14. Larimer BM et al (2017) Granzyme B PET imaging as a predictive biomarker of immunotherapy response. Cancer Res 77(9):2318–2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tavare R et al (2014) Engineered antibody fragments for immuno-PET imaging of endogenous CD8+ T cells in vivo. Proc Natl Acad Sci U S A 111(3):1108–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vaidyanathan G, Zalutsky MR (2006) Synthesis of N-succinimidyl 4-[18F]fluorobenzoate, an agent for labeling proteins and peptides with 18F. Nat Protocols 1(4):1655–1661

    Article  CAS  PubMed  Google Scholar 

  17. Wadas TJ et al (2010) Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev 110:2858–2902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McKnight BN, Viola-Villegas NT (2018) (89) Zr-ImmunoPET companion diagnostics and their impact in clinical drug development. J Labelled Comp Radiopharm 61(9):727–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yoon JK et al (2020) Current perspectives on (89)Zr-PET imaging. Int J Mol Sci 21(12)

  20. (2011) Proceedings of the 9th International Workshop on Human Leukocyte Differentiation Antigens. March 2010. Barcelona, Spain. Immunol Lett 134: 103–187

  21. Wu AM (2014) Engineered antibodies for molecular imaging of cancer. Methods 65(1):139–147

    Article  CAS  PubMed  Google Scholar 

  22. Wu AM et al (2000) High-resolution microPET imaging of carcinoembryonic antigen-positive xenografts by using a copper-64-labeled engineered antibody fragment. Proc Natl Acad Sci U S A 97(15):8495–8500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sundaresan G et al (2003) 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med 44(12):1962–1969

    CAS  PubMed  Google Scholar 

  24. Olafsen T et al (2004) Covalent disulfide-linked anti-CEA diabody allows site-specific conjugation and radiolabeling for tumor targeting applications. Protein Eng Des Select 17(1):21–27

    Article  CAS  Google Scholar 

  25. Hornick JL et al (2000) Single amino acid substitution in the Fc region of chimeric TNT-3 antibody accelerates learance and improves immunoscintigraphy of solid tumors. J Nucl Med 41:355–362

    CAS  PubMed  Google Scholar 

  26. Kenanova V et al (2005) Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res 65(2):622–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Natarajan A, Hackel BJ, Gambhir SS (2013) A novel engineered anti-CD20 tracer enables early time PET imaging in a humanized transgenic mouse model of B-cell non-Hodgkins lymphoma. Clin Cancer Res 19(24):6820–6829

    Article  CAS  PubMed  Google Scholar 

  28. Ramakrishnan S et al (2019) Engineering of a novel subnanomolar affinity fibronectin III domain binder targeting human programmed death-ligand 1. Protein Eng Des Sel

  29. Gonzalez Trotter DE et al (2017) In vivo imaging of the programmed death ligand 1 by (18)F PET. J Nucl Med 58(11):1852–1857

    Article  PubMed  Google Scholar 

  30. Beckford Vera DR et al (2018) Immuno-PET imaging of tumor-infiltrating lymphocytes using zirconium-89 radiolabeled anti-CD3 antibody in immune-competent mice bearing syngeneic tumors. PLoS One 13(3):e0193832

    Article  PubMed  PubMed Central  Google Scholar 

  31. Olafsen T et al (2009) Recombinant anti-CD20 antibody fragments for small-animal PET imaging of B-cell lymphomas. J Nucl Med 50(9):1500–1508

    Article  CAS  PubMed  Google Scholar 

  32. Zettlitz KA et al (2017) ImmunoPET of malignant and normal B cells with (89)Zr- and (124)I-labeled obinutuzumab antibody fragments reveals differential CD20 internalization in vivo. Clin Cancer Res 23(23):7242–7252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zettlitz KA et al (2019) (18)F-labeled anti-human CD20 cys-diabody for same-day immunoPET in a model of aggressive B cell lymphoma in human CD20 transgenic mice. Eur J Nucl Med Mol Imaging 46(2):489–500

    Article  CAS  PubMed  Google Scholar 

  34. Tavare R et al (2015) ImmunoPET of murine T cell reconstitution post-adoptive stem cell transplant using anti-CD4 and anti-CD8 cys-diabodies. J Nucl Med 56:1258–1264

    Article  CAS  PubMed  Google Scholar 

  35. Rashidian M et al (2015) Noninvasive imaging of immune responses. Proc Natl Acad Sci U S A 112(19):6146–6151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xavier C et al (2019) Clinical translation of [(68)Ga]Ga-NOTA-anti-MMR-sdAb for PET/CT imaging of protumorigenic macrophages. Mol Imaging Biol 21(5):898–906

    Article  CAS  PubMed  Google Scholar 

  37. James ML et al (2017) Imaging B cells in a mouse model of multiple sclerosis using (64)Cu-rituximab PET. J Nucl Med 58(11):1845–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stevens MY et al (2020) Development of a CD19 PET tracer for detecting B cells in a mouse model of multiple sclerosis. J Neuroinflammation 17(1):275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sautes-Fridman C et al (2019) Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer 19(6):307–325

    Article  CAS  PubMed  Google Scholar 

  40. Larimer BM et al (2016) Quantitative CD3 PET Imaging predicts tumor growth response to anti-CTLA-4 therapy. J Nucl Med 57(10):1607–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pektor S et al (2019) Using immuno-PET imaging to monitor kinetics of T cell-mediated inflammation and treatment efficiency in a humanized mouse model for GvHD. Eur J Nucl Med Mol Imaging

  42. Tumeh PC et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen PL et al (2016) Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov 6(8):827–837

    Article  PubMed  PubMed Central  Google Scholar 

  44. Herbst RS et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528):563–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tavare R et al (2016) An effective immuno-PET imaging method to monitor CD8-dependent responses to immunotherapy. Cancer Res 76(1):73–82

    Article  CAS  PubMed  Google Scholar 

  46. Parisi G et al (2020) Persistence of adoptively transferred T cells with a kinetically engineered IL-2 receptor agonist. Nat Commun 11(1):660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu J et al (2017) Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat Commun 8(1):1811

    Article  PubMed  PubMed Central  Google Scholar 

  48. Seo JW et al (2018) CD8(+) T-cell density imaging with (64)Cu-labeled Cys-diabody informs immunotherapy protocols. Clin Cancer Res 24(20):4976–4987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kristensen LK et al (2019) CD4(+) and CD8a(+) PET imaging predicts response to novel PD-1 checkpoint inhibitor: studies of Sym021 in syngeneic mouse cancer models. Theranostics 9(26):8221–8238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kristensen LK et al (2020) Monitoring CD8a(+) T cell responses to radiotherapy and CTLA-4 blockade using [(64)Cu]NOTA-CD8a PET imaging. Mol Imaging Biol 22(4):1021–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rashidian M et al (2017) Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. J Exp Med

  52. Rashidian M et al (2019) Immuno-PET identifies the myeloid compartment as a key contributor to the outcome of the antitumor response under PD-1 blockade. Proc Natl Acad Sci U S A 116(34):16971–16980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao H et al (2021) ImmunoPET imaging of human CD8(+) T cells with novel (68)Ga-labeled nanobody companion diagnostic agents. J Nanobiotechnology 19(1):42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Woodham AW et al (2020) In vivo detection of antigen-specific CD8(+) T cells by immuno-positron emission tomography. Nat Methods 17(10):1025–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Griessinger CM et al (2020) The PET-Tracer (89)Zr-Df-IAB22M2C enables monitoring of intratumoral CD8 T-cell infiltrates in tumor-bearing humanized mice after T-cell bispecific antibody treatment. Cancer Res 80(13):2903–2913

    Article  CAS  PubMed  Google Scholar 

  56. Nagle VL et al (2021) Imaging tumor-infiltrating lymphocytes in brain tumors with [(64)Cu]Cu-NOTA-anti-CD8 PET. Clin Cancer Res 27(7):1958–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gill H et al (2020) The production, quality control, and characterization of ZED8, a CD8-specific (89)Zr-labeled immuno-PET clinical imaging agent. AAPS J 22(2):22

    Article  CAS  PubMed  Google Scholar 

  58. Freise AC et al (2018) Immuno-PET in inflammatory bowel disease: imaging CD4-positive T cells in a murine model of colitis. J Nucl Med 59(6):980–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Santangelo PJ et al (2018) Early treatment of SIV+ macaques with an alpha4beta7 mAb alters virus distribution and preserves CD4(+) T cells in later stages of infection. Mucosal Immunol 11(3):932–946

    Article  CAS  PubMed  Google Scholar 

  60. Nigam S et al (2020) Preclinical immunopet imaging of glioblastoma-infiltrating myeloid cells using zirconium-89 labeled anti-CD11b antibody. Mol Imaging Biol 22(3):685–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Park JW et al (2021) (89)Zr anti-CD44 immuno-PET monitors CD44 expression on splenic myeloid cells and HT29 colon cancer cells. Sci Rep 11(1):3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Blykers A et al (2015) PET Imaging of macrophage mannose receptor-expressing macrophages in tumor stroma using 18F-radiolabeled camelid single-domain antibody fragments. J Nucl Med 56(8):1265–1271

    Article  CAS  PubMed  Google Scholar 

  63. Natarajan A et al (2017) Development of novel immunopet tracers to image human PD-1 checkpoint expression on tumor-infiltrating lymphocytes in a humanized mouse model. Mol Imaging Biol 19(6):903–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vento J et al (2019) PD-L1 detection using (89)Zr-atezolizumab immuno-PET in renal cell carcinoma tumorgrafts from a patient with favorable nivolumab response. J Immunother Cancer 7(1):144

    Article  PubMed  PubMed Central  Google Scholar 

  65. Higashikawa K et al (2014) 64Cu-DOTA-anti-CTLA-4 mAb enabled PET visualization of CTLA-4 on the T-cell infiltrating tumor tissues. PLoS One 9(11):e109866

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wei W et al (2020) ImmunoPET imaging of TIM-3 in murine melanoma models. Adv Ther (Weinh) 3(7)

  67. Shaffer T, Natarajan A, Gambhir SS (2021) PET imaging of TIGIT expression on tumor-infiltrating lymphocytes. Clin Cancer Res 27(7):1932–1940

    Article  CAS  PubMed  Google Scholar 

  68. Alam IS et al (2018) Imaging activated T cells predicts response to cancer vaccines. J Clin Invest 128(6):2569–2580

    Article  PubMed  PubMed Central  Google Scholar 

  69. England CG et al (2017) Preclinical pharmacokinetics and biodistribution studies of 89Zr-labeled pembrolizumab. J Nucl Med 58(1):162–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Christensen C et al (2020) Quantitative PET imaging of PD-L1 expression in xenograft and syngeneic tumour models using a site-specifically labelled PD-L1 antibody. Eur J Nucl Med Mol Imaging 47(5):1302–1313

    Article  CAS  PubMed  Google Scholar 

  71. Josefsson A et al (2016) Imaging, biodistribution, and dosimetry of radionuclide-labeled PD-L1 antibody in an immunocompetent mouse model of breast cancer. Cancer Res 76(2):472–479

    Article  CAS  PubMed  Google Scholar 

  72. Nedrow JR et al (2017) Imaging of programmed death ligand-1 (PD-L1): impact of protein concentration on distribution of anti-PD-L1 SPECT agent in an immunocompetent melanoma murine model. J Nucl Med

  73. Natarajan A et al (2015) Novel radiotracer for immunopet imaging of PD-1 checkpoint expression on tumor infiltrating lymphocytes. Bioconjug Chem 26(10):2062–2069

    Article  CAS  PubMed  Google Scholar 

  74. Hettich M et al (2016) High-resolution PET imaging with therapeutic antibody-based PD-1/PD-L1 checkpoint tracers. Theranostics 6(10):1629–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jagoda EM et al (2019) Immuno-PET imaging of the programmed cell death-1 ligand (PD-L1) using a zirconium-89 labeled therapeutic antibody, Avelumab. Mol Imaging 18:1536012119829986

    Article  PubMed  PubMed Central  Google Scholar 

  76. Li M et al (2020) In vivo characterization of PD-L1 expression in breast cancer by immuno-PET with 89Zr-labeled avelumab. Am J Transl Res 12:1862–1872

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Truillet C et al (2018) Imaging PD-L1 Expression with immunopet. Bioconjug Chem 29(1):96–103

    Article  CAS  PubMed  Google Scholar 

  78. Kelly MP et al (2021) Preclinical PET imaging with the novel human antibody (89)Zr-DFO-REGN3504 sensitively detects PD-L1 expression in tumors and normal tissues. J Immunother Cancer 9(1)

  79. Wissler HL et al (2019) Site-specific immuno-PET tracer to image PD-L1. Mol Pharm 16(5):2028–2036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bridoux J et al (2020) Anti-human PD-L1 nanobody for immuno-PET imaging: validation of a conjugation strategy for clinical translation. Biomolecules 10(10)

  81. Li D et al (2018) Immuno-PET Imaging of 89Zr Labeled anti-PD-L1 domain antibody. Mol Pharm 15(4):1674–1681

    Article  CAS  PubMed  Google Scholar 

  82. Donnelly DJ et al (2018) Synthesis and biologic evaluation of a novel (18)F-labeled adnectin as a PET radioligand for imaging PD-L1 expression. J Nucl Med 59(3):529–535

    Article  CAS  PubMed  Google Scholar 

  83. Ehlerding EB et al (2017) ImmunoPET imaging of CTLA-4 expression in mouse models of non-small cell lung cancer. Mol Pharm 14(5):1782–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lecocq Q et al (2019) Noninvasive imaging of the immune checkpoint LAG-3 using nanobodies, from development to pre-clinical use. Biomolecules 9(10)

  85. Zeelen C et al (2018) In-vivo imaging of tumor-infiltrating immune cells: implications for cancer immunotherapy. Quar J Nucl Med Mol Imag 62:56–77

    Google Scholar 

  86. Martinez O et al (2019) New developments in imaging cell-based therapy. J Nucl Med 60(6):730–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Simonetta F et al (2021) Molecular imaging of chimeric antigen receptor t cells by ICOS-immunopet. Clin Cancer Res 27(4):1058–1068

    Article  CAS  PubMed  Google Scholar 

  88. Kenanova V et al (2009) Recombinant carcinoembryonic antigen as a reporter gene for molecular imaging. Eur J Nucl Med Mol Imaging 36(1):104–114

    Article  CAS  PubMed  Google Scholar 

  89. Barat B et al. Evaluation of two internalizing carcinoembryonic antigen reporter genes for molecular imaging. Mol Imaging Biol

  90. Kao RL et al (2019) A cetuximab-mediated suicide system in chimeric antigen receptor-modified hematopoietic stem cells for cancer therapy. Hum Gene Ther 30(4):413–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Leonard JP (2005) Targeting CD20 in follicular NHL: novel anti-CD20 therapies, antibody engineering, and the use of radioimmunoconjugates. Hematol Am Soc Hematol Educ Program 335–9

  92. Natarajan A et al (2015) Validation of 64-Cu-DOTA-rituximab injection preparation under good manufacturing practices: a PET tracer for imaging B-cell non_Hodgkin lymphoma. Mol Imaging

  93. Tran L et al (2011) CD20 antigen imaging with (1)(2)(4)I-rituximab PET/CT in patients with rheumatoid arthritis. Hum Antibodies 20(1–2):29–35

    Article  CAS  PubMed  Google Scholar 

  94. Sales de Sa R et al (2020) Increased tumor immune microenvironment CD3+ and CD20+ lymphocytes predict a better prognosis in oral tongue squamous cell carcinoma. Front Cell Dev Biol 8: 622161

  95. Brunner M et al (2020) Upregulation of CD20 Positive B-cells and B-cell aggregates in the tumor infiltration zone is associated with better survival of patients with pancreatic ductal adenocarcinoma. Int J Mol Sci 21(5)

  96. Gooden MJ et al (2011) The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer 105(1):93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Azimi F et al (2012) Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J Clin Oncol 30(21):2678–2683

    Article  PubMed  Google Scholar 

  98. Brahmer JR (2012) PD-1-targeted immunotherapy: recent clinical findings. Clin Adv Hematol Oncol 10(10):674–675

    PubMed  Google Scholar 

  99. Ribas A et al (2018) Oncolytic virotherapy promotes intratumoral t cell infiltration and improves anti-PD-1 immunotherapy. Cell 174(4):1031–1032

    Article  CAS  PubMed  Google Scholar 

  100. Tove Olafsen ZKJ, Romero J, Zamilpa C, Marchioni F, Zhang G, Torgov M, Satpayev D, Gudas JM. Abstract LB-188: Sensitivity of 89Zr-labeled anti-CD8 minibody for PET imaging of infiltrating CD8+ T cells. AACR, 2016. Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16–20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr LB-188

  101. Pandit-Taskar N et al (2019) First-in-human imaging with (89)Zr-Df-IAB22M2C anti-CD8 minibody in patients with solid malignancies: preliminary pharmacokinetics, biodistribution, and lesion targeting. J Nucl Med

  102. Yi M et al (2018) Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer 17(1):129

    Article  PubMed  PubMed Central  Google Scholar 

  103. van der Veen EL et al (2020) (89)Zr-pembrolizumab biodistribution is influenced by PD-1-mediated uptake in lymphoid organs. J Immunother Cancer 8(2)

  104. Li W et al (2021) PET/CT Imaging of (89)Zr-N-sucDf-pembrolizumab in healthy cynomolgus monkeys. Mol Imaging Biol 23(2):250–259

    Article  CAS  PubMed  Google Scholar 

  105. Chen A et al (2019) Early (18)F-FDG PET/CT response predicts survival in relapsed/refractory Hodgkin lymphoma treated with nivolumab. J Nucl Med

  106. Eshghi N, Lundeen TF, Kuo PH (2018) Dynamic adaptation of tumor immune response with nivolumab demonstrated by 18F-FDG PET/CT. Clin Nucl Med 43(2):114–116

    Article  PubMed  Google Scholar 

  107. Rossi G et al (2019) Comparison between 18F-FDG-PET- and CT-based criteria in non-small cell lung cancer (NSCLC) patients treated with Nivolumab. J Nucl Med

  108. Cole EL et al (2017) Radiosynthesis and preclinical PET evaluation of (89)Zr-nivolumab (BMS-936558) in healthy non-human primates. Bioorg Med Chem 25(20):5407–5414

    Article  CAS  PubMed  Google Scholar 

  109. England CG et al (2018) (89)Zr-labeled nivolumab for imaging of T-cell infiltration in a humanized murine model of lung cancer. Eur J Nucl Med Mol Imaging 45(1):110–120

    Article  CAS  PubMed  Google Scholar 

  110. Bensch F et al (2018) (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med 24(12):1852–1858

    Article  CAS  PubMed  Google Scholar 

  111. Ulaner GA et al (2020) CD38-targeted immuno-PET of multiple myeloma: from xenograft models to first-in-human imaging. Radiology 295(3):606–615

    Article  PubMed  Google Scholar 

  112. Krishnan A et al (2020) Identifying CD38+ cells in patients with multiple myeloma: first-in-human imaging using copper-64-labeled daratumumab. Blood Adv 4(20):5194–5202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Krejcik J et al (2016) Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood 128(3):384–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Huard B et al (1994) Cellular expression and tissue distribution of the human LAG-3-encoded protein, an MHC class II ligand. Immunogenetics 39(3):213–217

    Article  CAS  PubMed  Google Scholar 

  115. Woo SR et al (2012) Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 72(4):917–927

    Article  CAS  PubMed  Google Scholar 

  116. Huard B et al (1996) T cell major histocompatibility complex class II molecules down-regulate CD4+ T cell clone responses following LAG-3 binding. Eur J Immunol 26(5):1180–1186

    Article  CAS  PubMed  Google Scholar 

  117. Pandit-Taskar N et al (2016) First-in-human imaging with 89Zr-Df-IAB2M anti-PSMA minibody in patients with metastatic prostate cancer: pharmacokinetics, biodistribution, dosimetry, and lesion uptake. J Nucl Med 57(12):1858–1864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pandit-Taskar N et al (2014) (8)(9)Zr-huJ591 immuno-PET imaging in patients with advanced metastatic prostate cancer. Eur J Nucl Med Mol Imaging 41(11):2093–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dijkers EC et al (2010) Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther 87(5):586–592

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna M. Wu.

Ethics declarations

Conflict of interest

A. M. Wu is a board member and consultant to ImaginAb, Inc. N. Pandit-Taskar has served as a consultant for or been on an advisory board and has received honoraria for Actinium Pharma, Progenics, Medimmune/AstraZeneca, Illumina, ImaginAb, and conducts research institutionally supported by Ymabs, ImaginAb, BMS, Bayer, Clarity Pharma, Janssen, and Regeneron.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, A.M., Pandit-Taskar, N. ImmunoPET: harnessing antibodies for imaging immune cells. Mol Imaging Biol 24, 181–197 (2022). https://doi.org/10.1007/s11307-021-01652-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-021-01652-7

Key words

Navigation