Skip to main content

Advertisement

Log in

Application of a Machine Learning Approach for the Analysis of Clinical and Radiomic Features of Pretreatment [18F]-FDG PET/CT to Predict Prognosis of Patients with Endometrial Cancer

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

To examine the prognostic significance of pretreatment 2-deoxy-2-[18F]fluoro-d-glucose ([18F]-FDG) positron emission tomography (PET)-based radiomic features using a machine learning approach in patients with endometrial cancers.

Procedures

Included in this retrospective study were 53 patients with endometrial cancers who underwent [18F]-FDG PET/X-ray computed tomography (CT) before treatment. Since two different PET scanners were used, post-reconstruction harmonization was performed for all PET parameters using the ComBat harmonization method. Four clinical (age, histological type, stage, and treatment method) and 40 [18F]-FDG PET-based radiomic features were ranked, and a subset of useful features was selected based on the decrease in the Gini impurity in terms of associations with disease progression. The machine learning algorithms (random forest, neural network, k-nearest neighbors (kNN), naive Bayes, logistic regression, and support vector machine) were compared using the areas under the receiver operating characteristic curve (AUC) and validated by the random sampling method. Progression-free survival (PFS) and overall survival (OS) were assessed by the Cox regression analysis.

Results

The five best predictors of disease progression were coarseness, gray-level run length nonuniformity, stage, treatment method, and gray-level zone length nonuniformity. The kNN model obtained the best performance classifier for predicting the disease progression (AUC =0.890, accuracy =0.849, F1 score =0.848, precision =0.857, and recall =0.849). Coarseness which was the first ranked radiomic feature was selected for survival analyses, and only coarseness remained as a significant and independent factor for both PFS (hazard ratios (HR), 0.65; 95 % confidence interval [CI], 0.49–0.86; p=0.003) and OS (HR, 0.52; 95 % CI, 0.36–0.76; p<0.001) at multivariate Cox regression analysis.

Conclusions

[18F]-FDG PET-based radiomic analysis using a machine learning approach may be useful for predicting tumor progression and prognosis in patients with endometrial cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  2. Berman ML, Ballon SC, Lagasse LD, Watring WG (1980) Prognosis and treatment of endometrial cancer. Am J Obstet Gynecol 136:679–688

    Article  CAS  PubMed  Google Scholar 

  3. Larson DM, Connor GP, Broste SK, Krawisz BR, Johnson KK (1996) Prognostic significance of gross myometrial invasion with endometrial cancer. Obstet Gynecol 88:394–398

    Article  CAS  PubMed  Google Scholar 

  4. Boronow RC, Morrow CP, Creasman WT et al (1984) Surgical staging in endometrial cancer: clinicalpathologic findings of a prospective study. Obstet Gynecol 63:825–832

    CAS  PubMed  Google Scholar 

  5. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577

    Article  PubMed  Google Scholar 

  6. von Schulthess GK, Steinert HC, Hany TF (2006) Integrated PET/CT: current applications and future directions. Radiology 238:405–422

    Article  Google Scholar 

  7. Lucia F, Visvikis D, Desseroit MC, Miranda O, Malhaire JP, Robin P, Pradier O, Hatt M, Schick U (2018) Prediction of outcome using pretreatment 18 F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging 45:768–786

    Article  PubMed  Google Scholar 

  8. Ho KC, Fang YH, Chung HW, Yen TC, Ho TY, Chou HH, Hong JH, Huang YT, Wang CC, Lai CH (2016) A preliminary investigation into textural features of intratumoral metabolic heterogeneity in (18)F-FDG PET for overall survival prognosis in patients with bulky cervical cancer treated with definitive concurrent chemoradiotherapy. Am J Nucl Med Mol Imaging 6:166–175

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen SW, Shen WC, Hsieh TC, Liang JA, Hung YC, Yeh LS, Chang WC, Lin WC, Yen KY, Kao CH (2018) Textural features of cervical cancers on FDG-PET/CT associate with survival and local relapse in patients treated with definitive chemoradiotherapy. Sci Rep 8:11859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Reuzé S, Orlhac F, Chargari C, Nioche C, Limkin E, Riet F, Escande A, Haie-Meder C, Dercle L, Gouy S, Buvat I, Deutsch E, Robert C (2017) Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners. Oncotarget 8:43169–43179

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yang F, Thomas MA, Dehdashti F, Grigsby PW (2013) Temporal analysis of intratumoral metabolic heterogeneity characterized by textural features in cervical cancer. Eur J Nucl Med Mol Imaging 40:716–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chong GO, Lee YH, Hong DG, Cho YL, Lee YS (2015) Unabsorbed polylactide adhesion barrier mimicking recurrence of gynecologic malignant diseases with increased 18F-FDG uptake on PET/CT. Arch Gynecol Obstet 292:191–195

    Article  CAS  PubMed  Google Scholar 

  13. Nioche C, Orlhac F, Boughdad S, Reuzé S, Goya-Outi J, Robert C, Pellot-Barakat C, Soussan M, Frouin F, Buvat I (2018) LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res 78:4786–4789

    Article  CAS  PubMed  Google Scholar 

  14. Brown PJ, Zhong J, Frood R, Currie S, Gilbert A, Appelt AL, Sebag-Montefiore D, Scarsbrook A (2019) Prediction of outcome in anal squamous cell carcinoma using radiomic feature analysis of pre-treatment FDG PET-CT. Eur J Nucl Med Mol Imaging 46:2790–2799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8:118–127

    Article  PubMed  Google Scholar 

  16. Orlhac F, Boughdad S, Philippe C, Stalla-Bourdillon H, Nioche C, Champion L, Soussan M, Frouin F, Frouin V, Buvat I (2018) A postreconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med 59:1321–1328

    Article  CAS  PubMed  Google Scholar 

  17. FIGO Committee on Gynecologic Oncology (2014) FIGO staging for carcinoma of the vulva, cervix, and corpus uteri. Int J Gynaecol Obstet 125:97–98

    Article  Google Scholar 

  18. Gini C (1997) Concentration and dependency ratios. Riv Polit Econ 87:769–789

    Google Scholar 

  19. Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  20. Rahman R, Kodesh A, Levine SZ, Sandin S, Reichenberg A, Schlessinger A (2020) Identification of newborns at risk for autism using electronic medical records and machine learning. Eur Psychiatry 63:e22

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hyun SH, Ahn MS, Koh YW, Lee SJ (2019) A machine-learning approach using PET-based radiomics to predict the histological subtypes of lung cancer. Clin Nucl Med 44:956–960

    Article  PubMed  Google Scholar 

  22. Demsar J, Curk T, Erjavec A et al (2013) Orange: data mining toolbox in Python. J Mach Learn Res 14:2349–2353

    Google Scholar 

  23. Lausen B, Schumacher M (1992) Maximally selected rank statistics. Biometrics 48:73–85

    Article  Google Scholar 

  24. Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ (2013) Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging 40:133–140

    Article  PubMed  Google Scholar 

  25. Castellano G, Bonilha L, Li LM, Cendes F (2004) Texture analysis of medical images. Clin Radiol 59:1061–1069

    Article  CAS  PubMed  Google Scholar 

  26. Yu H, Caldwell C, Mah K, Mozeg D (2009) Coregistered FDG PET/CT based textural characterization of head and neck cancer for radiation treatment planning. IEEE Trans Med Imaging 28:374–383

    Article  PubMed  Google Scholar 

  27. Lv W, Yuan Q, Wang Q, Ma J, Jiang J, Yang W, Feng Q, Chen W, Rahmim A, Lu L (2018) Robustness versus disease differentiation when varying parameter settings in radiomics features: application to nasopharyngeal PET/CT. Eur Radiol 28:3245–3254

    Article  PubMed  Google Scholar 

  28. Galloway MM (1975) Texture analysis using gray level run lengths. Comput Graphics Image Process 4:172–179

    Article  Google Scholar 

  29. Thibault G, Angulo J, Meyer F (2014) Advanced statistical matrices for texture characterization: application to cell classification. IEEE Trans Biomed Eng 61:630–637

    Article  PubMed  Google Scholar 

  30. Xu R, Kido S, Suga K, Hirano Y, Tachibana R, Muramatsu K, Chagawa K, Tanaka S (2014) Texture analysis on 18F-FDG PET/CT images to differentiate malignant and benign bone and soft-tissue lesions. Ann Nucl Med 28:926–935

    Article  CAS  PubMed  Google Scholar 

  31. Cheng L, Zhang J, Wang Y, Xu X, Zhang Y, Zhang Y, Liu G, Cheng J (2017) Textural features of 18F-FDG PET after two cycles of neoadjuvant chemotherapy can predict pCR in patients with locally advanced breast cancer. Ann Nucl Med 31:544–552

    Article  CAS  PubMed  Google Scholar 

  32. Suzuki K, Yisong C (2018) In: Suzuki K, Chen Y (eds) Artificial intelligence in decision support systems for diagnosis in medical imaging [Internet]. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-68843-5

    Chapter  Google Scholar 

  33. Cheng NM, Fang YH, Lee LY et al (2015) Zone-size nonuniformity of 18F-FDG PET regional textural features predicts survival in patients with oropharyngeal cancer. Eur J Nucl Med Mol Imaging 42:419–428

    Article  CAS  PubMed  Google Scholar 

  34. Yu H, Caldwell C, Mah K, Poon I, Balogh J, MacKenzie R, Khaouam N, Tirona R (2009) Automated radiation targeting in head-and-neck cancer using region-based texture analysis of PET and CT images. Int J Radiat Oncol Biol Phys 75:618–625

    Article  PubMed  Google Scholar 

  35. De Bernardi E, Buda A, Guerra L et al (2018) Radiomics of the primary tumour as a tool to improve 18F-FDG-PET sensitivity in detecting nodal metastases in endometrial cancer. EJNMMI Res 8:86

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ahn HK, Lee H, Kim SG, Hyun SH (2019) Pre-treatment 18F-FDG PET-based radiomics predict survival in resected non-small cell lung cancer. Clin Radiol 74:467–473

    Article  CAS  PubMed  Google Scholar 

  37. Gao X, Chu C, Li Y, Lu P, Wang W, Liu W, Yu L (2015) The method and efficacy of support vector machine classifiers based on texture features and multi-resolution histogram from (18)F-FDG PET-CT images for the evaluation of mediastinal lymph nodes in patients with lung cancer. Eur J Radiol 84:312–317

    Article  PubMed  Google Scholar 

  38. Ypsilantis PP, Siddique M, Sohn HM, Davies A, Cook G, Goh V, Montana G (2015) Predicting response to neoadjuvant chemotherapy with PET imaging using convolutional neural networks. PLoS One 10:e0137036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Erickson BJ, Korfiatis P, Akkus Z, Kline TL (2017) Machine learning for medical imaging. Radiographics 37:505–515

    Article  PubMed  Google Scholar 

  40. Waljee AK, Higgins PD (2010) Machine learning in medicine: a primer for physicians. Am J Gastroenterol 105:1224–1246

    Article  PubMed  Google Scholar 

  41. Rajula HSR, Verlato G, Manchia M, Antonucci N, Fanos V (2020) Comparison of conventional statistical methods with machine learning in medicine: diagnosis, drug development, and treatment. Medicina (Kaunas) 56:455

    Article  Google Scholar 

  42. Ngiam KY, Khor IW (2019) Big data and machine learning algorithms for health-care delivery. Lancet Oncol 20:e262–e273

    Article  PubMed  Google Scholar 

  43. Liu FY, Cha A, Lai CH, Chou HH, Yen TC (2012) Metabolic tumor volume by 18F-FDG PET/CT is prognostic for stage IVB endometrial carcinoma. Gynecol Oncol 15:566–571

    Article  Google Scholar 

  44. Traverso A, Wee L, Dekker A, Gillies R (2018) Repeatability and reproducibility of radiomic features: a systematic review. Int J Radiat Oncol Biol Phys 102:1143–1158

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sanduleanu S, Woodruff HC, de Jong EEC, van Timmeren JE, Jochems A, Dubois L, Lambin P (2018) Tracking tumor biology with radiomics: a systematic review utilizing a radiomics quality score. Radiother Oncol 127:349–360

    Article  PubMed  Google Scholar 

  46. Cook GJR, Azad G, Owczarczyk K, Siddique M, Goh V (2018) Challenges and promises of PET radiomics. Int J Radiat Oncol Biol Phys 102:1083–1089

    Article  PubMed  PubMed Central  Google Scholar 

  47. Morin O, Vallières M, Jochems A, Woodruff HC, Valdes G, Braunstein SE, Wildberger JE, Villanueva-Meyer JE, Kearney V, Yom SS, Solberg TD, Lambin P (2018) A deep look into the future of quantitative imaging in oncology: a statement of working principles and proposal for change. Int J Radiat Oncol Biol Phys 102:1074–1082

    Article  PubMed  Google Scholar 

  48. Shiri I, Rahmim A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A (2017) The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol 27:4498–4509

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoyo Nakajo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed Consent

Informed consent was waived by the institutional review board for this retrospective study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakajo, M., Jinguji, M., Tani, A. et al. Application of a Machine Learning Approach for the Analysis of Clinical and Radiomic Features of Pretreatment [18F]-FDG PET/CT to Predict Prognosis of Patients with Endometrial Cancer. Mol Imaging Biol 23, 756–765 (2021). https://doi.org/10.1007/s11307-021-01599-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-021-01599-9

Key words

Navigation