Skip to main content

Advertisement

Log in

Preclinical Evaluation of Radiolabeled DOTA-Derivatized Cyclic Minigastrin Analogs for Targeting Cholecystokinin Receptor Expressing Malignancies

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Targeting of cholecystokinin receptor expressing malignancies such as medullary thyroid carcinoma is currently limited by low in vivo stability of radioligands. To increase the stability, we have developed and preclinically evaluated two cyclic 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-minigastrin analogs radiolabeled with 111In and 68Ga.

Procedures

Radiolabeling efficiency, in vitro characterization, cholecystokinin receptor subtype 2 (CCK-2) binding in human tumor tissues, and cell internalization on CCK-2 receptor expressing AR42J cells, as well as biodistribution and small animal imaging in two different mouse xenograft models were studied.

Results

High receptor affinity and receptor-mediated uptake of the radioligands in AR42J cells was confirmed in vitro. 111In-labeled cyclic DOTA-peptides showed a specific tumor uptake of ~1% ID/g in vivo, 68Ga-labeled analogs of ~3% ID/g. Small animal SPECT imaging resulted to be superior with 111In-DOTA-cyclo-MG2 in comparison with 111In-DOTA-cyclo-MG1.

Conclusions

Cyclic DOTA-minigastrin analogs are promising candidates for gastrin receptor scintigraphy and targeted radionuclide therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kwekkeboom DJ, de Herder WW, van Eijck CH, Kam BL, van Essen M, Teunissen JJ, Krenning EP (2010) Peptide receptor radionuclide therapy in patients with gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med 40:78–88

    Article  PubMed  Google Scholar 

  2. Virgolini IJ, Gabriel M, von Guggenberg E, Putzer D, Kendler D, Decristoforo C (2009) Role of radiopharmaceuticals in the diagnosis and treatment of neuroendocrine tumours. Eur J Cancer 45:S274–S291

    Article  Google Scholar 

  3. Reubi JC (2007) Targeting CCK receptors in human cancers. Curr Top Med Chem 7:1239–1242

    Article  PubMed  CAS  Google Scholar 

  4. Behe M, Behr TM (2002) Cholecystokinin-B (CCK-B)/gastrin receptor targeting peptides for staging and therapy of medullary thyroid cancer and other CCK-B receptor expressing malignancies. Biopolymers 66:399–418

    Article  PubMed  CAS  Google Scholar 

  5. Behr TM, Gotthardt M, Barth A, Behe M (2001) Imaging tumors with peptide-based radioligands. Q J Nucl Med 45:189–200

    PubMed  CAS  Google Scholar 

  6. Gotthardt M, Béhé MP, Beuter D, Battmann A, Bauhofer A, Schurrat T, Schipper M, Pollum H, Oyen WJ, Behr TM (2006) Improved tumour detection by gastrin receptor scintigraphy in patients with metastasised medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 33:1273–1279

    Article  PubMed  Google Scholar 

  7. Gotthardt M, Béhé MP, Grass J, Bauhofer A, Rinke A, Schipper ML, Kalinowski M, Arnold R, Oyen WJ, Behr TM (2006) Added value of gastrin receptor scintigraphy in comparison to somatostatin receptor scintigraphy in patients with carcinoids and other neuroendocrine tumours. Endocr Relat Cancer 13:1203–1211

    Article  PubMed  Google Scholar 

  8. Laverman P, Roosenburg S, Gotthardt M, Park J, Oyen WJ, de Jong M, Hellmich MR, Rutjes FP, van Delft FL, Boerman OC (2008) Targeting of a CCK2 receptor splice variant with 111In-labelled cholecystokinin-8 (CCK8) and 111In-labelled minigastrin. Eur J Nucl Med Mol Imaging 35:386–392

    Article  PubMed  CAS  Google Scholar 

  9. Béhé M, Becker W, Gotthardt M, Angerstein C, Behr TM (2003) Improved kinetic stability of DTPA- dGlu as compared with conventional monofunctional DTPA in chelating indium and yttrium: preclinical and initial clinical evaluation of radiometal labelled minigastrin derivatives. Eur J Nucl Med Mol Imaging 30:1140–1146

    Article  PubMed  Google Scholar 

  10. von Guggenberg E, Behe M, Behr TM, Saurer M, Seppi T, Decristoforo C (2004) 99mTc-Labeling, in vitro and in vivo evaluation of HYNIC and (Nα-His)-acetic acid modified [D-Glu1]-Minigastrin. Bioconjug Chem 15:864–871

    Article  Google Scholar 

  11. Nock BA, Maina T, Behe M, Nikolopoulou A, Gotthardt M, Schmitt JS, Behr TM, Macke HR (2005) CCK-2/gastrin receptor-targeted tumor imaging with 99mTc-labeled minigastrin analogs. J Nucl Med 46:1727–1736

    PubMed  CAS  Google Scholar 

  12. Melis M, Krenning EP, Bernard BF, de Visser M, Rolleman E, de Jong M (2007) Renal uptake and retention of radiolabeled somatostatin; bombesin; neurotensin; minigastrin and CCK analogs: species and gender differences. Nucl Med Biol 34:633–641

    Article  PubMed  CAS  Google Scholar 

  13. Béhé M, Kluge G, Becker W, Gotthardt M, Behr TM (2005) Use of polyglutamic acids to reduce uptake of radiometal-labeled minigastrin in the kidneys. J Nucl Med 46:1012–1015

    PubMed  Google Scholar 

  14. Behe M, Reubi J, Nock B, Mäcke H, Breeman WAP, Bernard HF, Behr TM, De Jong M (2005) Evaluation of a DOTA-minigastrin derivative for therapy and diagnosis for CCK-2 receptor positive tumours. Eur J Nucl Med Mol Imaging 32:S78

    Google Scholar 

  15. Helbok A, Decristoforo C, Behe M, Rangger C, von Guggenberg E (2009) Preclinical evaluation of In-111 and Ga-68 labelled minigastrin analogues for CCK-2 receptor imaging. Current Radiopharm 2:304–310

    CAS  Google Scholar 

  16. von Guggenberg E, Dietrich H, Skvortsova I, Gabriel M, Virgolini IJ, Decristoforo C (2007) 99mTc-labelled HYNIC-minigastrin with reduced kidney uptake for targeting of CCK-2 receptor-positive tumours. Eur J Nucl Med Mol Imaging 34:1209–1218

    Article  Google Scholar 

  17. Nikolopoulou A, Nock BA, Petrou C, Ketani E, Cordopatis P, Maina T (2006) In vivo targeting of CCK-2/Gastrin-R and reduction of renal accumulation with truncated [99mTc]Demogastrin 4–6. In: Mazzi U, Giron MC, Nadali A, Rossin R (eds) Technetium, Rhenium and Other Materials in Chemistry and Nuclear Medicine 7. SGEditotoriali, Padova, pp 325–326

    Google Scholar 

  18. Kosowicz J, Mikołajczak R, Czepczyński R, Ziemnicka K, Gryczyńska M, Sowiński J (2007) Two peptide receptor ligands 99mTc-EDDA/HYNIC-Tyr3-octreotide and 99mTc-EDDA/HYNIC-dGlu-octagastrin for scintigraphy of medullary thyroid carcinoma. Cancer Biother Radiopharm 22:613–628

    Article  PubMed  CAS  Google Scholar 

  19. Good S, Walter MA, Waser B, Wang X, Müller-Brand J, Béhé MP, Reubi JC, Maecke HR (2008) Macrocyclic chelator-coupled gastrin-based radiopharmaceuticals for targeting of gastrin receptor-expressing tumours. Eur J Nucl Med Mol Imaging 35:1868–1877

    Article  PubMed  CAS  Google Scholar 

  20. Stone SR, Giragossian C, Mierke DF, Jackson GE (2007) Further evidence for a C-terminal structural motif in CCK2 receptor active peptide hormones. Peptides 28:2211–2222

    Article  PubMed  CAS  Google Scholar 

  21. von Guggenberg E, Sallegger W, Helbok A, Ocak M, King R, Mather SJ, Decristoforo C (2009) Cyclic Minigastrin analogues for gastrin receptor scintography with Technitium-99 m: preclinical evaluation. J Med Chem 52:4786–4793

    Article  Google Scholar 

  22. Svoboda M, Dupuche MH, Lambert M, Bui D, Christophe J (1990) Internalization-sequestration and degradation of cholecystokinin (CCK) in tumoral rat pancreatic AR 4–2 J cells. Biochim Biophys Acta 1055:207–216

    Article  PubMed  CAS  Google Scholar 

  23. Reubi JC, Schaer JC, Waser B (1997) Cholecystokinin(CCK)-A and CCK-B/gastrin receptors in human tumors. Cancer Res 57:1377–1386

    PubMed  CAS  Google Scholar 

  24. Ocak M, Decristoforo C, Rangger C, Helbok A, Sallegger W, von Guggenberg E (2009) 177Lu-DOTA-cyclogastrin: stability assessment and evaluation in vitro. J Label Compd Radiopharm 52:S514

    Article  Google Scholar 

  25. de Visser M, Verwijnen SM, de Jong M (2008) Update: improvement strategies for peptide receptor scintigraphy and radionuclide therapy. Cancer Biother Radiopharm 23:137–157

    Article  PubMed  Google Scholar 

  26. Reubi JC, Maecke HR (2008) Peptide-based probes for cancer imaging. J Nucl Med 49:1735–1738

    Article  PubMed  CAS  Google Scholar 

  27. Trejtnar F, Laznicek M, Laznickova A, Kopecky M, Petrik M, Béhé M, Schmidt J, Maecke H, Maina T, Nock B (2007) Biodistribution and elimination characteristics of two 111In-labeled CCK-2/gastrin receptor-specific peptides in rats. Anticancer Res 27:907–912

    PubMed  CAS  Google Scholar 

  28. Cremonesi M, Ferrari M, Zoboli S, Chinol M, Stabin MG, Orsi F, Maecke HR, Jermann E, Robertson C, Fiorenza M, Tosi G, Paganelli G (1999) Biokinetics and dosimetry in patients administered with 111In-DOTA-Tyr(3)-octreotide: implications for internal radiotherapy with 90Y-DOTATOC. Eur J Nucl Med 26:877–886

    Article  PubMed  CAS  Google Scholar 

  29. Decristoforo C, Hernandez Gonzalez I, Carlsen J, Rupprich M, Huisman M, Virgolini I, Wester HJ, Haubner R (2008) 68Ga- and 111In-labelled DOTA-RGD peptides for imaging of alphavbeta3 integrin expression. Eur J Nucl Med Mol Imaging 35:1507–1515

    Article  PubMed  Google Scholar 

  30. Charpentier B, Pelaprat D, Durieux C, Dor A, Reibaud M, Blanchard JC, Roques BP (1988) Cyclic cholecystokinin analogs with high selectivity for central receptors. Proc Natl Acad Sci USA 85:1968–1972

    Article  PubMed  CAS  Google Scholar 

  31. Sosabowski J, Matzow T, Foster J, Mather S (2008) Targeting of CCK2 receptor expressing tumours using an 111In-labelled minigastrin dimer. Q J Nucl Med Mol Imaging 52:S13

    Google Scholar 

  32. Akgün E, Körner M, Gao F, Harikumar KG, Waser B, Reubi JC, Portoghese PS, Miller LJ (2009) Synthesis and in vitro characterization of radioiodinatable benzodiazepines selective for type 1 and type 2 cholecystokinin receptors. J Med Chem 52:2138–2147

    Article  PubMed  Google Scholar 

  33. Breeman WAP, de Blois E, van Gameren A, Melis M, Fröberg A, de Jong M, Mäcke H, Krenning EP (2006) Aspects of CCK-2 receptor-targeting with 111In-DOTA-MG. In: Mazzi U, Giron MC, Nadali A, Rossin R (eds) Technetium, rhenium and other materials in Chemistry and Nuclear Medicine 7. SGEditotoriali, Padova, pp 231–232

    Google Scholar 

  34. Mather SJ, McKenzie AJ, Sosabowski JK, Morris TM, Ellison D, Watson SA (2007) Selection of radiolabeled gastrin analogs for peptide receptor-targeted radionuclide therapy. J Nucl Med 48:615–622

    Article  PubMed  CAS  Google Scholar 

  35. Maina T, Nikolopoulou A, Ketani E, Petrou C, Cordopatis P, Nock BA (2006) Oxidation—Nle11/Mox11 replacement of Met11 in [99mTc]demogastrin 2: effects on CCK-2/gastrin-R-interaction. In: Mazzi U, Giron MC, Nadali A, Rossin R (eds) Technetium, rhenium and other materials in Chemistry and Nuclear Medicine 7. SGEditotoriali, Padova, pp 323–324

    Google Scholar 

  36. Sosabowski JK, Lee M, Dekker BA, Simmons BP, Singh S, Beresford H, Hagan SA, McKenzie AJ, Mather SJ, Watson SA (2007) Formulation development and manufacturing of a gastrin/CCK-2 receptor targeting peptide as an intermediate drug product for a clinical imaging study. Eur J Pharm Sci 31:102–111

    Article  PubMed  CAS  Google Scholar 

  37. Werle M, Bernkop-Schnürch A (2006) Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids 30:351–367

    Article  PubMed  CAS  Google Scholar 

  38. Breeman WA, Froberg AC, de Blois E, van Gameren A, Melis M, de Jong M, Maina T, Nock BA, Erion JL, Macke HR, Krenning EP (2008) Optimised labeling, preclinical and initial clinical aspects of CCK-2 receptor-targeting with 3 radiolabeled peptides. Nucl Med Biol 35:839–849

    Article  PubMed  CAS  Google Scholar 

  39. Ocak M, Helbok A, Rangger C, Peitl PK, Nock BA, Morelli G, Eek A, Sosabowski JK, Breeman WA, Reubi JC, Decristoforo C (2011) Comparison of biological stability and metabolism of CCK2 receptor targeting peptides, a collaborative project under COST BM0607. Eur J Nucl Med Mol Imaging (in press)

  40. Reubi JC, Schär JC, Waser B, Wenger S, Heppeler A, Schmitt JS, Mäcke HR (2000) Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med 27:273–282

    Article  PubMed  CAS  Google Scholar 

  41. Ginj M, Chen J, Walter MA, Eltschinger V, Reubi JC, Maecke HR (2005) Preclinical evaluation of new and highly potent analogues of octreotide for predictive imaging and targeted radiotherapy. Clin Cancer Res 11:1136–1145

    PubMed  CAS  Google Scholar 

  42. Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Heute D, Uprimny C, Kovacs P, von Guggenberg E, Bale R, Virgolini IJ (2007) 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48:508–518

    Article  PubMed  CAS  Google Scholar 

  43. Antunes P, Ginj M, Zhang H, Waser B, Baum RP, Reubi JC, Maecke H (2007) Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging 34:982–993

    Article  PubMed  CAS  Google Scholar 

  44. de Jong M, Breeman WA, Bernard BF, van Gameren A, de Bruin E, Bakker WH, van der Pluijm ME, Visser TJ, Mäcke HR, Krenning EP (1999) Tumour uptake of the radiolabelled somatostatin analogue [DOTA0, TYR3]octreotide is dependent on the peptide amount. Eur J Nucl Med 26:693–698

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Werner Sallegger from piCHEM Research and Development (Graz, Austria) for synthesizing the peptide derivatives used in this study. Lieke Joosten (Radboud University Nijmegen Medical Centre) is acknowledged for expert help in radiolabeling. Ciara Finucane, Jerome Burnet, and Julie Foster assisted in the imaging studies carried out at Barts and the London, Queen Mary's School of Medicine and Dentistry. Collaboration within the COST Action BM0607 “Targeted Radionuclide Therapy (TRNT)” is greatly acknowledged. This work was supported by grants from the Austrian Nano Initiative (Nano-Health consortium, Project N208-NAN) and was partly performed within the PhD program Image Guided Diagnosis and Therapy (IGDT) of the Medical University Innsbruck, Austria.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth von Guggenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Guggenberg, E., Rangger, C., Sosabowski, J. et al. Preclinical Evaluation of Radiolabeled DOTA-Derivatized Cyclic Minigastrin Analogs for Targeting Cholecystokinin Receptor Expressing Malignancies. Mol Imaging Biol 14, 366–375 (2012). https://doi.org/10.1007/s11307-011-0506-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-011-0506-2

Key words

Navigation