Skip to main content
Log in

Macrocyclic chelator-coupled gastrin-based radiopharmaceuticals for targeting of gastrin receptor-expressing tumours

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Diethylenetriamine-pentaacetic acid (DTPA)-coupled minigastrins are unsuitable for therapeutic application with the available β-emitting radiometals due to low complex stability. Low tumour-to-kidney ratio of the known radiopharmaceuticals is further limiting their potency. We used macrocyclic chelators for coupling to increase complex stability, modified the peptide sequence to enhance radiolytic stability and studied tumour-to-kidney ratio and metabolic stability using 111In-labelled derivatives.

Methods

Gastrin derivatives with decreasing numbers of glutamic acids were synthesised using 111In as surrogate for therapeutic radiometals for in vitro and in vivo studies. Gastrin receptor affinities of the natIn-metallated compounds were determined by receptor autoradiography using 125I-CCK as radioligand. Internalisation was evaluated in AR4-2J cells. Enzymatic stability was determined by incubating the 111In-labelled peptides in human serum. Biodistribution was performed in AR4-2J-bearing Lewis rats.

Results

IC50 values of the natIn-metallated gastrin derivatives vary between 1.2 and 4.8 nmol/L for all methionine-containing derivatives. Replacement of methionine by norleucine, isoleucine, methionine-sulfoxide and methionine-sulfone resulted in significant decrease of receptor affinity (IC50 between 9.9 and 1,195 nmol/L). All cholecystokinin receptor affinities were >100 nmol/L. All 111In-labelled radiopeptides showed receptor-specific internalisation. Serum mean-life times varied between 2.0 and 72.6 h, positively correlating with the number of Glu residues. All 111In-labelled macrocyclic chelator conjugates showed higher tumour-to-kidney ratios after 24 h (0.37–0.99) compared to 111In-DTPA-minigastrin 0 (0.05). Tumour wash out between 4 and 24 h was low. Imaging studies confirmed receptor-specific blocking of the tumour uptake.

Conclusions

Reducing the number of glutamates increased tumour-to-kidney ratio but resulted in lower metabolic stability. The properties of the macrocyclic chelator-bearing derivatives make them potentially suitable for clinical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wank SA, Pisegna JR, de Weerth A. Cholecystokinin receptor family. Molecular cloning, structure, and functional expression in rat, guinea pig, and human. Ann N Y Acad Sci 1994;713:49–66.

    Article  PubMed  CAS  Google Scholar 

  2. Rehfeld JF. The endoproteolytic maturation of progastrin and procholecystokinin. J Mol Med 2006;84:544–50.

    Article  PubMed  CAS  Google Scholar 

  3. Noble F, Wank SA, Crawley JN, Bradwejn J, Seroogy KB, Hamon M, et al. International Union of Pharmacology. XXI. Structure, distribution, and functions of cholecystokinin receptors. Pharmacol Rev 1999;51:745–81.

    PubMed  CAS  Google Scholar 

  4. Reubi JC. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 2003;24:389–427.

    Article  PubMed  CAS  Google Scholar 

  5. Reubi JC, Waser B, Laderach U, Stettler C, Friess H, Halter F, et al. Localization of cholecystokinin A and cholecystokinin B-gastrin receptors in the human stomach. Gastroenterology 1997;112:1197–205.

    Article  PubMed  CAS  Google Scholar 

  6. Reubi J, Waser B. Unexpected high incidence of cholecystokinin B/gastrin receptors in human medullary thyroid carcinomas. Int J Cancer 1996;67:644–7.

    Article  PubMed  CAS  Google Scholar 

  7. Reubi JC, Schaer JC, Waser B. Cholecystokinin(CCK)-A and CCK-B/gastrin receptors in human tumors. Cancer Res 1997;57:1377–86.

    PubMed  CAS  Google Scholar 

  8. Reubi JC, Waser B. Concomitant expression of several peptide receptors in neuroendocrine tumours: molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging 2003;30:781–93.

    PubMed  CAS  Google Scholar 

  9. Gotthardt M, Behe MP, Beuter D, Battmann A, Bauhofer A, Schurrat T, et al. Improved tumour detection by gastrin receptor scintigraphy in patients with metastasised medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 2006;33:1273–9.

    Article  PubMed  Google Scholar 

  10. Gotthardt M, Behe MP, Grass J, Bauhofer A, Rinke A, Schipper ML, et al. Added value of gastrin receptor scintigraphy in comparison to somatostatin receptor scintigraphy in patients with carcinoids and other neuroendocrine tumours. Endocr Relat Cancer 2006;13:1203–11.

    Article  PubMed  Google Scholar 

  11. Behr TM, Jenner N, Radetzky S, Behe M, Gratz S, Yucekent S, et al. Targeting of cholecystokinin-B/gastrin receptors in vivo: preclinical and initial clinical evaluation of the diagnostic and therapeutic potential of radiolabelled gastrin. Eur J Nucl Med 1998;25:424–30.

    Article  PubMed  CAS  Google Scholar 

  12. de Jong M, Bakker W, Bernard B, Valkema R, Kwekkeboom D, Reubi J, et al. Preclinical and initial clinical evaluation of 111In-labeled nonsulfated CCK8 analog: a peptide for CCK-B receptor targeted scintigraphy and radionuclide therapy. J Nucl Med 1999;40:2081–7.

    PubMed  Google Scholar 

  13. Behr TM, Jenner N, Behe M, Angerstein C, Gratz S, Raue F, et al. Radiolabeled peptides for targeting cholecystokinin-B/gastrin receptor-expressing tumors. J Nucl Med 1999;40:1029–44.

    PubMed  CAS  Google Scholar 

  14. Reubi JC. CCK receptors in human neuroendocrine tumors: clinical implications. Scand J Clin Lab Invest Suppl 2001;234:101–4.

    PubMed  CAS  Google Scholar 

  15. Kwekkeboom DJ, Bakker WH, Kooij PP, Erion J, Srinivasan A, de Jong M, et al. Cholecystokinin receptor imaging using an octapeptide DTPA-CCK analogue in patients with medullary thyroid carcinoma. Eur J Nucl Med 2000;27:1312–7.

    Article  PubMed  CAS  Google Scholar 

  16. Reubi JC, Maecke HR, Krenning EP. Candidates for peptide receptor radiotherapy today and in the future. J Nucl Med 2005;46:67S–75S.

    PubMed  CAS  Google Scholar 

  17. von Guggenberg E, Behe M, Behr TM, Saurer M, Seppi T, Decristoforo C. 99mTc-labeling and in vitro and in vivo evaluation of HYNIC- and (Na-His)acetic acid-modified [d-Glu1]-minigastrin. Bioconjug Chem 2004;15:864–71.

    Article  Google Scholar 

  18. Behe M, Becker W, Gotthardt M, Angerstein C, Behr TM. Improved kinetic stability of DTPA-dGlu as compared with conventional monofunctional DTPA in chelating indium and yttrium: preclinical and initial clinical evaluation of radiometal labelled minigastrin derivatives. Eur J Nucl Med Mol Imaging 2003;30:1140–6.

    Article  PubMed  CAS  Google Scholar 

  19. Behe M, Behr TM. Cholecystokinin-B (CCK-B)/gastrin receptor targeting peptides for staging and therapy of medullary thyroid cancer and other CCK-B receptor expressing malignancies. Biopolymers 2002;66:399–418.

    Article  PubMed  CAS  Google Scholar 

  20. Nock BA, Maina T, Behe M, Nikolopoulou A, Gotthardt M, Schmitt JS, et al. CCK-2/Gastrin receptor-targeted tumor imaging with 99mTc-labeled minigastrin analogs. J Nucl Med 2005;46:1727–36.

    PubMed  CAS  Google Scholar 

  21. Aloj L, Caraco C, Panico M, Zannetti A, Del Vecchio S, Tesauro D, et al. In vitro and in vivo evaluation of 111In-DTPAGlu-G-CCK8 for cholecystokinin-B receptor imaging. J Nucl Med 2004;45:485–94.

    PubMed  CAS  Google Scholar 

  22. Behr TM, Behe MP. Cholecystokinin-B/Gastrin receptor-targeting peptides for staging and therapy of medullary thyroid cancer and other cholecystokinin-B receptor-expressing malignancies. Semin Nucl Med 2002;32:97–109.

    Article  PubMed  Google Scholar 

  23. Harrison A, Walker C, Parker D. The in vivo release of 90Y from cyclic and acyclic ligand-antibody conjugates. Nucl Med & Biol 1991;18:469–76.

    CAS  Google Scholar 

  24. Eisenwiener KP, Powell P, Maecke HR. A convenient synthesis of novel bifunctional prochelators for coupling to bioactive peptides for radiometal labelling. Bioorg Med Chem Lett 2000;10:2133–5.

    Article  PubMed  CAS  Google Scholar 

  25. Good S, Maecke H. Kinetics of formation and dissociation of two DOTA-based chelator conjugates with 177Lu. Eur J Nucl Med Mol Imaging 2003;30(Suppl 2):S319.

    Google Scholar 

  26. Good S, Maecke H. Stability and kinetics of formation of two macrocyclic chelator-conjugates. Nuklearmedizin 2004;43:A11.

    Google Scholar 

  27. Heppeler A, Froidevaux S, Mäcke HR, Jermann E, Béhé M, Powell P, et al. Radiometal-labelled macrocyclic chelator-derivatised somatostatin analogue with superb tumour-targeting properties and potential for receptor-mediated internal radiotherapy. Chemistry A European Journal 1999;5:1016–23.

    Google Scholar 

  28. Eisenwiener KP, Prata MI, Buschmann I, Zhang HW, Santos AC, Wenger S, et al. NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors. Bioconjug Chem 2002;13:530–41.

    Article  PubMed  CAS  Google Scholar 

  29. Reubi J, Waser B, Schaer J, Laederach U, Erion J, Srinivasan A, et al. Unsulfated DTPA- and DOTA-CCK analogs as specific high-affinity ligands for CCK-B receptor-expressing human and rat tissues in vitro and in vivo. Eur J Nucl Med 1998;25:481–90.

    Article  PubMed  CAS  Google Scholar 

  30. Reubi JC, Kvols LK, Waser B, Nagorney DM, Heitz PU, Charboneau JW, et al. Detection of somatostatin receptors in surgical and percutaneous needle biopsy samples of carcinoids and islet cell carcinomas. Cancer Res 1990;50:5969–77.

    PubMed  CAS  Google Scholar 

  31. Christophe J. Pancreatic tumoral cell line AR42J: an amphicrine model. Am J Physiol 1994;266:G963–G71.

    PubMed  CAS  Google Scholar 

  32. Wild D, Schmitt JS, Ginj M, Maecke HR, Bernard BF, Krenning E, et al. DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals. Eur J Nucl Med Mol Imaging 2003;30:1338–47.

    Article  PubMed  CAS  Google Scholar 

  33. Storch D, Behe M, Walter MA, Chen J, Powell P, Mikolajczak R, et al. Evaluation of [99mTc/EDDA/HYNIC0]octreotide derivatives compared with [111In-DOTA0,Tyr3, Thr8]octreotide and [111In-DTPA0]octreotide: does tumor or pancreas uptake correlate with the rate of internalization? J Nucl Med 2005;46:1561–9.

    PubMed  CAS  Google Scholar 

  34. Maecke H, Good S. Radiometals (non-Tc, non-Re) and bifunctional labeling chemistry. In: Vertes A, Nagy S, Klencsar Z, editors. Handbook of nuclear chemistry. Vol. 4. Netherlands; 2003, p. 279–314.

  35. Bogni A, Bombardieri E, Iwata R, Cadini L, Pascali C. Stability of l-[S-methyl-11C]methionine solutions. J Radioanal Nucl Chem 2003;256:199–203.

    Article  CAS  Google Scholar 

  36. Liu S, Edwards DS. Stabilization of 90Y-labeled DOTA-biomolecule conjugates using gentisic acid and ascorbic acid. Bioconjug Chem 2001;12:554–8.

    Article  PubMed  CAS  Google Scholar 

  37. Good S, Maecke H, Merlo A, Reubi JC. Development of NK-1 receptor mediated radiopharmaceuticals. Nuklearmedizin 2004;43:A7.

    Google Scholar 

  38. Breeman WA, de Jong M, Kwekkeboom DJ, Valkema R, Bakker WH, Kooij PP, et al. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives. Eur J Nucl Med 2001;28:1421–9.

    Article  PubMed  CAS  Google Scholar 

  39. Trejtnar F, Laznicek M. Analysis of renal handling of radiopharmaceuticals. Q J Nucl Med 2002;46:181–94.

    PubMed  CAS  Google Scholar 

  40. de Jong M, Barone R, Krenning E, Bernard B, Melis M, Visser T, et al. Megalin is essential for renal proximal tubule reabsorption of 111In-DTPA-octreotide. J Nucl Med 2005;46:1696–700.

    PubMed  Google Scholar 

  41. Behe M, Kluge G, Becker W, Gotthardt M, Behr TM. Use of polyglutamic acids to reduce uptake of radiometal-labeled minigastrin in the kidneys. J Nucl Med 2005;46:1012–5.

    PubMed  CAS  Google Scholar 

  42. von Guggenberg E, Rupprich M, Virgolini I, Decristoforo C. 99mTc-HYNIC-Minigastrin: improved in vitro and in vivo properties of a short chain analogue. Eur J Nucl Med Mol Imaging 2005;32(Suppl 1):S35.

    Google Scholar 

  43. Behe M, Reubi JC, Nock B. Evaluation of a DOTA-minigastrin derivative for therapy and diagnosis for CCK-2 receptor positive tumours. Eur J Nucl Med Mol Imaging 2005;32(Suppl 1):S78.

    Google Scholar 

  44. Behr TM, Goldenberg DM, Becker W. Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations. Eur J Nucl Med 1998;25:201–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Swiss National Science Foundation (Grant No. 320000-114043) is gratefully acknowledged. The work was performed within the European Cooperation in the field of Scientific and Technical Research, COST Action B12: “Radiotracers for in vivo assessment of biological functions” and the European Molecular Imaging Laboratories network of excellence (EMIL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut R. Maecke.

Additional information

SG and MAW contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1:

Complete list of biodistribution organ uptake (DOC 52.0 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Good, S., Walter, M.A., Waser, B. et al. Macrocyclic chelator-coupled gastrin-based radiopharmaceuticals for targeting of gastrin receptor-expressing tumours. Eur J Nucl Med Mol Imaging 35, 1868–1877 (2008). https://doi.org/10.1007/s00259-008-0803-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0803-4

Keywords

Navigation