Skip to main content

Advertisement

Log in

In Vivo Phage Display Selection Yields Atherosclerotic Plaque Targeted Peptides for Imaging

  • Brief Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Atherosclerosis is a leading cause of morbidity and mortality in the Western world, yet specific imaging agents to detect and map inflammatory plaques are still lacking.

Procedures

We used in vivo phage display to interrogate early atherosclerotic lesions present in ApoE−/− mice with the goal of identifying plaque-associated endothelial cell internalized affinity ligands.

Results

We identified 30 phage families with some of these families exhibiting homology to known atherosclerotic proteins, namely, leukemia inhibitory factor, transferrin, and VLA-4. VLA-4 homologous peptides [termed vascular cellular adhesion molecule-1 (VCAM-1) internalizing peptide-28 (VINP28)] bound to and were internalized by VCAM-1-expressing cells and were inhibited by soluble VCAM-1. In addition, a VINP28 modified multimodal nanoparticle showed high affinity for endothelial cells expressing VCAM-1 but low affinity for macrophages or smooth muscle cells.

Conclusion

The identified peptides represent a set of probes to interrogate the cell surface repertoire and potentially allow early detection of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Libby P (2002) Inflammation in atherosclerosis. Nature 420(6917):868–874

    Article  PubMed  CAS  Google Scholar 

  2. da Luz PL, Bertini PJ, Favarato D (2005) Noninvasive detection of coronary artery disease—challenges for prevention of disease and clinical events. Clinics 60(5):415–428

    Article  PubMed  Google Scholar 

  3. Libby P (2001) The vascular biology of atherosclerosis. Philadelphia: WB Saunders

    Google Scholar 

  4. Stary HC, et al. (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 89(5):2462–2478

    PubMed  CAS  Google Scholar 

  5. Steinberg D, et al. (1997) A new approach to determining the rates of recruitment of circulating leukocytes into tissues: application to the measurement of leukocyte recruitment into atherosclerotic lesions. Proc Natl Acad Sci USA 94(8): 4040–4044

    Article  PubMed  CAS  Google Scholar 

  6. Zitzmann S, et al. (2005). A new prostate carcinoma binding peptide (DUP-1) for tumor imaging and therapy. Clin Cancer Res 11(1):139–146

    PubMed  CAS  Google Scholar 

  7. Landon LA, Deutscher SL (2003) Combinatorial discovery of tumor targeting peptides using phage display. J Cell Biochem 90(3):509–517

    Article  PubMed  CAS  Google Scholar 

  8. Ruoslahti E (2004) Vascular zip codes in angiogenesis and metastasis. Biochem Soc Trans 32(Pt 3):397–402

    Article  PubMed  CAS  Google Scholar 

  9. Kelly KA, Jones DA (2003) Isolation of a colon tumor specific binding peptide using phage display selection. Neoplasia 5(5):437–444

    PubMed  CAS  Google Scholar 

  10. Kelly KA, et al. (2005) Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res 96(3):327–336

    Article  PubMed  CAS  Google Scholar 

  11. Kelly KA, Clemons PA, Yu AM, Weissleder R (2005) High-throughput identification of phage derived imaging agents. Mol Imaging 5

  12. Zhao M, et al. (2002) Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug Chem 13(4):840–844

    Article  PubMed  CAS  Google Scholar 

  13. Allport JR, et al. (2002) Neutrophils from MMP-9- or neutrophil elastase-deficient mice show no defect in transendothelial migration under flow in vitro. J Leukoc Biol 71(5):821–828

    PubMed  CAS  Google Scholar 

  14. Mandava S, et al. (2004) RELIC—a bioinformatics server for combinatorial peptide analysis and identification of protein–ligand interaction sites. Proteomics 4(5):1439–4160

    Article  PubMed  CAS  Google Scholar 

  15. Wunderbaldinger P, Josephson L, Weissleder R (2002) Tat peptide directs enhanced clearance and hepatic permeability of magnetic nanoparticles. Bioconjug Chem 13(2):264–268

    Article  PubMed  CAS  Google Scholar 

  16. Weissleder R, et al. (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol 152(1):167–173

    PubMed  CAS  Google Scholar 

  17. Gillett NA, et al. (1993) Leukemia inhibitory factor expression in human carotid plaques: possible mechanism for inhibition of large vessel endothelial regrowth. Growth Factors 9(4):301–305

    Article  PubMed  CAS  Google Scholar 

  18. Katz MF, et al. (1994) Serotonin-stimulated aortic endothelial cells secrete a novel T lymphocyte chemotactic and growth factor. J Leukoc Biol 55(5):567–573

    PubMed  CAS  Google Scholar 

  19. Yuan XM, et al. (2004) Secretion of ferritin by iron-laden macrophages and influence of lipoproteins. Free Radic Res 38(10):1133–1142

    Article  PubMed  CAS  Google Scholar 

  20. Liu C, et al. (2003) In vivo interrogation of the molecular display of atherosclerotic lesion surfaces. Am J Pathol 163(5):1859–1871

    PubMed  CAS  Google Scholar 

  21. Pasqualini R, Koivunen E, Ruoslahti E (1995) A peptide isolated from phage display libraries is a structural and functional mimic of an RGD-binding site on integrins. J Cell Biol 130(5):1189–1196

    Article  PubMed  CAS  Google Scholar 

  22. Scott JK, Smith GP (1990) Searching for peptide ligands with an epitope library. Science 249(4967):386–390

    Article  PubMed  CAS  Google Scholar 

  23. Smith GP, Schultz DA, Ladbury JE (1993) A ribonuclease S-peptide antagonist discovered with a bacteriophage display library. Gene 128(1):37–42

    Article  PubMed  CAS  Google Scholar 

  24. Oyama T, et al. (2003) Isolation of lung tumor specific peptides from a random peptide library: generation of diagnostic and cell-targeting reagents. Cancer Lett 202(2):219–230

    Article  PubMed  CAS  Google Scholar 

  25. Arap W, et al. (2002) Steps toward mapping the human vasculature by phage display. Nat Med 8(2):121–127

    Article  PubMed  CAS  Google Scholar 

  26. Taupin JL, et al. (1998) Leukemia inhibitory factor: part of a large ingathering family. Int Rev Immunol 16(3–4):397–426

    Article  PubMed  CAS  Google Scholar 

  27. Houston P, et al. (2001) Homing markers for atherosclerosis: applications for drug delivery, gene delivery and vascular imaging. FEBS Lett 492(1–2):73–77

    Article  PubMed  CAS  Google Scholar 

  28. Molenaar TJ, et al. (2003) P-selectin as a candidate target in atherosclerosis. Biochem Pharmacol 66(5):859–866

    Article  PubMed  CAS  Google Scholar 

  29. Weissleder R, et al. (2005) Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol 23(11):1418–1423

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Lee Josephson, PhD, for critical review and helpful discussions and Dr. Nikolai Sergeyev, PhD, for synthesis of CLIO-Cy5.5. This study was supported by a grant from the Donald W. Reynolds Foundation Cardiovascular Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Weissleder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, K.A., Nahrendorf, M., Yu, A.M. et al. In Vivo Phage Display Selection Yields Atherosclerotic Plaque Targeted Peptides for Imaging. Mol Imaging Biol 8, 201–207 (2006). https://doi.org/10.1007/s11307-006-0043-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-006-0043-6

Key words

Navigation