Skip to main content
Log in

LC–MS based global metabolite profiling: the necessity of high data quality

  • Review Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

LC–MS based global metabolite profiling currently lacks detailed guidelines to demonstrate that the obtained data is of high enough analytical quality. Insufficient data quality may result in the failure to generate a hypothesis, or in the worst case, a false or skewed hypothesis. After assessing the literature, it is apparent that an analytically focused summary and critical discussion related to this subject would be beneficial for both beginners and experts engaged in this field. A particular focus will be placed on data quality, which we here define as the degree to which a set of parameters fulfills predetermined criteria, similar to the established guidelines for targeted analysis. However, several of these parameters are difficult to assess since holistic approaches measure thousands of metabolites in parallel and seldom include predefined knowledge of which metabolites will differ between sample groups. In this review, the following parameters will be discussed in detail: reproducibility, selectivity, certainty of metabolite identification and metabolite coverage. The review systematically describes the generic workflow for LC–MS based global metabolite profiling and highlights how each separate part may affect data quality. The last part of the review describes how data quality can be evaluated as well as identifies areas where additional improvement is needed. In this review, we provide our own analytical opinions in regards to evaluation and, to some extent, improvement of data quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allwood, J. W., Erban, A., de Koning, S., Dunn, W. B., Luedemann, A., Lommen, A., et al. (2009). Inter-laboratory reproducibility of fast gas chromatography–electron impact–time of flight mass spectrometry (GC–EI–TOF/MS) based plant metabolomics. Metabolomics, 5(4), 479–496. doi:10.1007/s11306-009-0169-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armitage, E. G., Godzien, J., Alonso-Herranz, V., López-Gonzálvez, Á., & Barbas, C. (2015). Missing value imputation strategies for metabolomics data. Electrophoresis, 36, 3050–3060. doi:10.1002/elps.201500352.

    Article  CAS  PubMed  Google Scholar 

  • Bauer, C., Cramer, R., & Schuchhardt, J. (2011). Data Mining in Proteomics. Methods in Enzymology, 696(1), 93–105. doi:10.1007/978-1-60761-987-1.

    Google Scholar 

  • Bell, D. S., Cramer, H. M., & Jones, A. D. (2005). Rational method development strategies on a fluorinated liquid chromatography stationary phase: Mobile phase ion concentration and temperature effects on the separation of ephedrine alkaloids. Journal of Chromatography A, 1095(1–2), 113–118. doi:10.1016/j.chroma.2005.08.004.

    Article  CAS  PubMed  Google Scholar 

  • Benton, H. P., Want, E., Keun, H. C., Amberg, A., Plumb, R. S., Goldfain-Blanc, F., et al. (2012). Intra- and interlaboratory reproducibility of ultra performance liquid chromatography-time-of-flight mass spectrometry for urinary metabolic profiling. Analytical Chemistry, 84(5), 2424–2432. doi:10.1021/ac203200x.

    Article  CAS  PubMed  Google Scholar 

  • Bijlsma, S., Bobeldijk, I., Verheij, E. R., Ramaker, R., Kochhar, S., Macdonald, I. A., et al. (2006). Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation. Analytical Chemistry, 78(2), 567–574. doi:10.1021/ac051495j.

    Article  CAS  PubMed  Google Scholar 

  • Boron, W. F. (2004). Regulation of intracellular pH. Advances in Physiology Education, 28, 160–179. doi:10.1152/advan.00045.2004.

    Article  PubMed  Google Scholar 

  • Bowen, B. P., & Northen, T. R. (2010). Dealing with the unknown: Metabolomics and metabolite atlases. Journal of the American Society for Mass Spectrometry, 21(9), 1471–1476. doi:10.1016/j.jasms.2010.04.003.

    Article  CAS  PubMed  Google Scholar 

  • Brereton, R. G., & Lloyd, G. R. (2014). Partial least squares discriminant analysis: Taking the magic away. Journal of Chemometrics, 28(4), 213–225. doi:10.1002/cem.2609.

    Article  CAS  Google Scholar 

  • Broadhurst, D. I., & Kell, D. B. (2006). Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics, 2(4), 171–196. doi:10.1007/s11306-006-0037-z.

    Article  CAS  Google Scholar 

  • Brodsky, L., Moussaieff, A., Shahaf, N., Aharoni, A., & Rogachev, I. (2010). Evaluation of peak picking quality in LC-MS metabolomics data. Analytical Chemistry, 82(22), 9177–9187. doi:10.1021/ac101216e.

    Article  CAS  PubMed  Google Scholar 

  • Brown, M., Dunn, W. B., Dobson, P., Patel, Y., Winder, C. L., Francis-McIntyre, S., et al. (2009). Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. Analyst, 134(7), 1322–1332. doi:10.1039/b901179j.

    Article  CAS  PubMed  Google Scholar 

  • Brown, M., Wedge, D. C., Goodacre, R., Kell, D. B., Baker, P. N., Kenny, L. C., et al. (2011). Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets. Bioinformatics, 27(8), 1108–1112. doi:10.1093/bioinformatics/btr079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce, S. J., Jonsson, P., Antti, H., Cloarec, O., Trygg, J., Marklund, S. L., & Moritz, T. (2008). Evaluation of a protocol for metabolic profiling studies on human blood plasma by combined ultra-performance liquid chromatography/mass spectrometry: From extraction to data analysis. Analytical Biochemistry, 372(2), 237–249. doi:10.1016/j.ab.2007.09.037.

    Article  CAS  PubMed  Google Scholar 

  • Bruce, S. J., Tavazzi, I., Rezzi, S., Kochhar, S., & Guy, P. A. (2009). Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Analytical Chemistry, 81(9), 3285–3296.

    Article  CAS  PubMed  Google Scholar 

  • Burton, L., Ivosev, G., Tate, S., Impey, G., Wingate, J., & Bonner, R. (2008). Instrumental and experimental effects in LC-MS-based metabolomics. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences, 871(2), 227–235. doi:10.1016/j.jchromb.2008.04.044.

    Article  CAS  PubMed  Google Scholar 

  • Bylesjö, M., Rentalainen, M., Cloarec, O., Nicholson, J. K., Holmes, E., & Trygg, J. (2006). OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. Journal of Chemometrics, 20(September), 341–351. doi:10.1002/cem.1006.

    Article  CAS  Google Scholar 

  • Calbiani, F., Careri, M., Elviri, L., Mangia, A., & Zagnoni, I. (2006). Matrix effects on accurate mass measurements of low-molecular weight compounds using liquid chromatography-electrospray-quadrupole time-of-flight mass spectrometry. Journal of Mass Spectrometry, 41(3), 289–294. doi:10.1002/jms.984.

    Article  CAS  PubMed  Google Scholar 

  • Castillo, S., Gopalacharyulu, P., Yetukuri, L., & Orešič, M. (2011). Algorithms and tools for the preprocessing of LC-MS metabolomics data. Chemometrics and Intelligent Laboratory Systems, 108(1), 23–32. doi:10.1016/j.chemolab.2011.03.010.

    Article  CAS  Google Scholar 

  • Coble, J. B., & Fraga, C. G. (2014). Comparative evaluation of preprocessing freeware on chromatography/mass spectrometry data for signature discovery. Journal of Chromatography A, 1358, 155–164. doi:10.1016/j.chroma.2014.06.100.

    Article  CAS  PubMed  Google Scholar 

  • Coulier, L., Bas, R., Jespersen, S., Verheij, E., van der Werf, M. J., & Hankemeier, T. (2006). Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography–electrospray ionization mass spectrometry. Analytical Chemistry, 78(18), 6573–6582. doi:10.1021/Ac0607616.

    Article  CAS  PubMed  Google Scholar 

  • Creek, D. J., Dunn, W. B., Fiehn, O., Griffin, J. L., Hall, R. D., Lei, Z., et al. (2014). Metabolite identification: are you sure? And how do your peers gauge your confidence? Metabolomics, 10(3), 350–353. doi:10.1007/s11306-014-0656-8.

    Article  CAS  Google Scholar 

  • Creek, D. J., Jankevics, A., Burgess, K. E. V., Breitling, R., & Barrett, M. P. (2012). IDEOM: An excel interface for analysis of LC-MS-based metabolomics data. Bioinformatics, 28(7), 1048–1049. doi:10.1007/s11306-011-0341-0.

    Article  CAS  PubMed  Google Scholar 

  • Cuhadar, S., Koseoglu, M., Atay, A., & Dirican, A. (2013). The effect of storage time and freeze-thaw cycles on the stability of serum samples. Biochem Med (Zagreb), 23(1), 70–77.

    Article  CAS  Google Scholar 

  • De Livera, A. M., Dias, D. A., Souza, D. De, Rupasinghe, T., Tull, D. L., Roessner, U., et al. (2012). Normalising and integrating metabolomics data normalising and integrating metabolomics data. Analytical Chemistry, 84, 10768–10776.

    Article  PubMed  CAS  Google Scholar 

  • Denery, J. R., Nunes, A. A. K., & Dickerson, T. J. (2011). Characterization of differences between blood sample matrices in untargeted metabolomics. Analytical Chemistry, 83, 1040–1047.

    Article  CAS  PubMed  Google Scholar 

  • Dettmer, K., Aronov, P. A., & Hammock, B. D. (2012). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 29(6), 997–1003. doi:10.1016/j.biotechadv.2011.08.021.Secreted.

    Google Scholar 

  • Di Guida, R., Engel, J., Allwood, J. W., Weber, R. J. M., Jones, M. R., Sommer, U., et al. (2016). Non-targeted UHPLC-MS metabolomic data processing methods: A comparative investigation of normalisation, missing value imputation, transformation and scaling. Metabolomics, 12(5), 93. doi:10.1007/s11306-016-1030-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dieterle, F., Ross, A., Schlotterbeck, G., & Senn, H. (2006). Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Analytical Chemistry, 78(13), 4281–4290. doi:10.1021/ac051632c.

    Article  CAS  PubMed  Google Scholar 

  • Draisma, H. H. M., Reijmers, T. H., & Van Der Kloet, F. (2010). Equating, or correction for between-block effects with application to body fluid LC–MS and NMR metabolomics datasets. Analytical Chemistry, 82(3), 1039–1046.

    Article  CAS  PubMed  Google Scholar 

  • Dunn, W. B., Broadhurst, D., Begley, P., Zelena, E., Francis-McIntyre, S., Anderson, N., et al. (2011). Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 6(7), 1060–1083. doi:10.1038/nprot.2011.335.

    Article  CAS  PubMed  Google Scholar 

  • Dunn, W. B., Erban, A., Weber, R. J. M., Creek, D. J., Brown, M., Breitling, R., et al. (2013). Mass appeal: Metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics, 9(suppl. 1), 44–66. doi:10.1007/s11306-012-0434-4.

    Article  CAS  Google Scholar 

  • Dunn, W. B., Wilson, I. D., Nicholls, A. W., & Broadhurst, D. (2012). The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis, 4(18), 2249–2264. doi:10.4155/bio.12.204.

    Article  CAS  PubMed  Google Scholar 

  • Eliasson, M., Ränner, S., Madsen, R., Donten, M. A., Marsden-Edwards, E., Moritz, T., et al. (2012). Strategy for optimizing LC–MS data processing in metabolomics: A design of experiments approach. Analytical Chemistry, 84(15), 6869–6876. doi:10.1016/j.ijpharm.2011.11.009.

    Article  CAS  PubMed  Google Scholar 

  • EMA. Guideline on bioanalytical method validation., EMA Guideline (2012). EMEA/CHMP/EWP/192217/2009.

  • Engskog, M., Björklund, M., Haglöf, J., Arvidsson, T., Shoshan, M., & Pettersson, C. (2015). Metabolic profiling of epithelial ovarian cancer cell lines: Evaluation of harvesting protocols for profiling using NMR spectroscopy. Bioanalysis, 7(2), 157–166.

    Article  CAS  PubMed  Google Scholar 

  • Eriksson, L., Byrne, T., Johansson, E., Trygg, J., & Vikström, C. (2013). Centering and Scaling. In Multi- and Megavariate Data Analysis (3rd ed., pp. 243–254). Malmö: MKS Umetrics AB.

  • Fiehn, O. (2002). Metabolomics—The link between genotypes and phenotypes. Plant Molecular Biology, 48(1–2), 155–171. doi:10.1023/A:1013713905833.

    Article  CAS  PubMed  Google Scholar 

  • Food and Drug Administration. (2001). Guidance for industry: Bioanalytical method validation. U.S. Department of Health and Human Services. doi:http://www.labcompliance.de/documents/FDA/FDA-Others/Laboratory/f-507-bioanalytical-4252fnl.pdf.

  • Food and Drug Administration. (2013). Guidance for industry bioanalytical method validation guidance for industry bioanalytical method validation. U.S. Department of Health and Human Services. doi:http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm368107.pdf.

  • Fura, A., Harper, T. W., Zhang, H., Fung, L., & Shyu, W. C. (2003). Shift in pH of biological fluids during storage and processing: Effect on bioanalysis. Journal of Pharmaceutical and Biomedical Analysis, 32(3), 513–522. doi:10.1016/S0731-7085(03)00159-6.

    Article  CAS  PubMed  Google Scholar 

  • Gertsman, I., Gangoiti, J., & Barshop, B. (2014). Validation of a dual LC-HRMS platform for clinical metabolic diagnosis in serum, bridging quantitative analysis and untargeted metabolomics. Metabolomics, 10(2), 312–323. doi:10.1016/j.biotechadv.2011.08.021.Secreted.

    Article  CAS  PubMed  Google Scholar 

  • Gika, H. G., Macpherson, E., Theodoridis, G. A., & Wilson, I. D. (2008). Evaluation of the repeatability of ultra-performance liquid chromatography-TOF-MS for global metabolic profiling of human urine samples. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences, 871(2), 299–305. doi:10.1016/j.jchromb.2008.05.048.

    Article  CAS  PubMed  Google Scholar 

  • Gika, H. G., Theodoridis, G. A., Earll, M., & Wilson, I. D. (2012a). A QC approach to the determination of day-to-day reproducibility and robustness of LC–MS methods for global metabolite profiling in metabonomics/metabolomics. Bioanalysis, 4(18), 2239–2247. doi:10.4155/bio.12.212.

    Article  CAS  PubMed  Google Scholar 

  • Gika, H., Theodoridis, G., Mattivi, F., Vrhovsek, U., & Pappa-Louisi, A. (2012b). Retention prediction of a set of amino acids under gradient elution conditions in hydrophilic interaction liquid chromatography. Journal of Separation Science, 35(3), 376–383. doi:10.1002/jssc.201100795.

    Article  CAS  PubMed  Google Scholar 

  • Gika, H. G., Theodoridis, G. A., Plumb, R. S., & Wilson, I. D. (2014a). Current practice of liquid chromatography–mass spectrometry in metabolomics and metabonomics. Journal of Pharmaceutical and Biomedical Analysis, 87, 12–25. doi:10.1016/j.jpba.2013.06.032.

    Article  CAS  PubMed  Google Scholar 

  • Gika, H. G., Theodoridis, G. A., Wingate, J. E., & Wilson, I. D. (2007). Within-day reproducibility of an HPLC–MS-based method for metabonomic analysis: Application to human urine research articles. Journal of Proteome Research, 6(8), 3291–3303.

    Article  CAS  PubMed  Google Scholar 

  • Gika, H. G., Wilson, I. D., & Theodoridis, G. A. (2014b). LC-MS-based holistic metabolic profiling. Problems, limitations, advantages, and future perspectives. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences, 966, 1–6. doi:10.1016/j.jchromb.2014.01.054.

    Article  CAS  PubMed  Google Scholar 

  • Gika, H. G., Zisi, C., Theodoridis, G., & Wilson, I. D. (2016). Protocol for quality control in metabolic profiling of biological fluids by U(H)PLC-MS. Journal of Chromatography B, 1008, 15–25. doi:10.1016/j.jchromb.2015.10.045.

    Article  CAS  Google Scholar 

  • Goeddel, L., & Patti, G. (2012). Maximizing the value of metabolomic data. Bioanalysis, 4(18), 2199–2201. doi:10.4155/bio.12.210.

    Article  CAS  PubMed  Google Scholar 

  • Goodacre, R. (2007). Metabolomics of a superorganism. The Journal of Nutrition, 137(suppl. 1), 259S–266S.

    CAS  PubMed  Google Scholar 

  • Gromski, P. S., Muhamadali, H., Ellis, D. I., Xu, Y., Correa, E., Turner, M. L., & Goodacre, R. (2015). A tutorial review: Metabolomics and partial least squares-discriminant analysis—A marriage of convenience or a shotgun wedding. Analytica Chimica Acta, 879, 10–23. doi:10.1016/j.aca.2015.02.012.

    Article  CAS  PubMed  Google Scholar 

  • Gromski, P. S., Xu, Y., Kotze, H. L., Correa, E., Ellis, D. I., Armitage, E. G., et al. (2014). Influence of missing values substitutes on multivariate analysis of metabolomics data. Metabolites, 4(2), 433–452. doi:10.3390/metabo4020433.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gürdeniz, G., Kristensen, M., Skov, T., & Dragsted, L. O. (2012). The effect of LC–MS data preprocessing methods on the selection of plasma biomarkers in fed versus fasted rats. Metabolites, 2(1), 77–99. doi:10.3390/metabo2010077.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hebels, D. G. A., Georgiadis, P., Keun, H. C., Athersuch, T. J., Vineis, P., Vermeulen, R., et al. (2013). Performance in omics analyses of blood samples in long-term storage: Opportunities for the exploitation of existing biobanks in environmental. Environmental Health Perspectives, 480(4), 480–487.

    Google Scholar 

  • Hendriks, G., Uges, D. R., & Franke, J. P. (2007). Reconsideration of sample pH adjustment in bioanalytical liquid-liquid extraction of ionisable compounds. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences, 853(1–2), 234–241. doi:10.1016/j.jchromb.2007.03.017.

    Article  CAS  PubMed  Google Scholar 

  • Hendriks, M. M. W. B., van Eeuwijk, F. A., Jellema, R. H., Westerhuis, J. A., Reijmers, T. H., Hoefsloot, H. C. J., & Smilde, A. K. (2011). Data-processing strategies for metabolomics studies. TrAC—Trends in Analytical Chemistry, 30(10), 1685–1698. doi:10.1016/j.trac.2011.04.019.

    Article  CAS  Google Scholar 

  • Hrydziuszko, O., & Viant, M. R. (2012). Missing values in mass spectrometry based metabolomics: An undervalued step in the data processing pipeline. Metabolomics, 8, 161–174. doi:10.1007/s11306-011-0366-4.

    Article  CAS  Google Scholar 

  • Ismaiel, O., Zhang, T., Jenkins, R., & Karnes, H. T. (2011). Determination of octreotide and assessment of matrix effects in human plasma using ultra high performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences, 879(22), 2081–2088. doi:10.1016/j.jchromb.2011.05.039.

    Article  CAS  PubMed  Google Scholar 

  • Issaq, H. J., Waybright, T. J., & Veenstra, T. D. (2011). Cancer biomarker discovery: Opportunities and pitfalls in analytical methods. Electrophoresis, 32(9), 967–975. doi:10.1002/elps.201000588.

    Article  CAS  PubMed  Google Scholar 

  • Ivanisevic, J., Zhu, Z. J., Plate, L., Tautenhahn, R., Chen, S., O’Brien, P. J., et al. (2013). Toward’Omic scale metabolite profiling: A dual separation-mass spectrometry approach for coverage of lipid and central carbon metabolism. Analytical Chemistry, 85(14), 6876–6884. doi:10.1021/ac401140h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson, J. E. (1991). A user’s guide to principal components. New York: Wiley. doi:10.1002/0471725331.

    Book  Google Scholar 

  • Jørgenrud, B., Jäntti, S. S., Mattila, I., Pöhö, P. P., Rønningen, K. S., Yki-Järvinen, H., et al. (2015). The influence of sample collection methodology and sample preprocessing on the blood metabolic profile. Bioanalysis, 7(8), 991–1006. doi:10.4155/bio.15.16.

    Article  PubMed  CAS  Google Scholar 

  • Kamlage, B., Maldonado, S. G., Bethan, B., Peter, E., Schmitz, O., Liebenberg, V., & Schatz, P. (2014). Quality markers addressing preanalytical variations of blood and plasma processing identified by broad and targeted metabolite profiling. Clinical Chemistry, 60(2), 399–412. doi:10.1373/clinchem.2013.211979.

    Article  CAS  PubMed  Google Scholar 

  • Kamleh, M. A., Ebbels, T. M. D., Spagou, K., Masson, P., & Want, E. J. (2012). Optimizing the use of quality control samples for signal drift correction in large-scale urine metabolic profiling studies. Analytical Chemistry, 84, 2670–2677.

    Article  CAS  PubMed  Google Scholar 

  • Katajamaa, M., Miettinen, J., & Orešič, M. (2006). MZmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics, 22(5), 634–636. doi:10.1093/bioinformatics/btk039.

    Article  CAS  PubMed  Google Scholar 

  • Kell, D. B. (2004). Metabolomics and systems biology: Making sense of the soup. Current Opinion in Microbiology, 7(3), 296–307. doi:10.1016/j.mib.2004.04.012.

    Article  CAS  PubMed  Google Scholar 

  • Keun, H. C., Ebbels, T. M. D., Antti, H., Bollard, M. E., Beckonert, O., Holmes, E., et al. (2003). Improved analysis of multivariate data by variable stability scaling: Application to NMR-based metabolic profiling. Analytica Chimica Acta, 490(1–2), 265–276. doi:10.1016/S0003-2670(03)00094-1.

    Article  CAS  Google Scholar 

  • Kind, T., & Fiehn, O. (2010). Advances in structure elucidation of small molecules using mass spectrometry. Bioanalytical Reviews, 2(1), 23–60. doi:10.1007/s12566-010-0015-9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirwan, J. A., Broadhurst, D. I., Davidson, R. L., & Viant, M. R. (2013). Characterising and correcting batch variation in an automated direct infusion mass spectrometry (DIMS) metabolomics workflow. Analytical and Bioanalytical Chemistry, 405(15), 5147–5157. doi:10.1007/s00216-013-6856-7.

    Article  CAS  PubMed  Google Scholar 

  • Kloos, D. P., Lingeman, H., Niessen, W. M. A., Deelder, A. M., Giera, M., & Mayboroda, O. A. (2013). Evaluation of different column chemistries for fast urinary metabolic profiling. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences, 927, 90–96. doi:10.1016/j.jchromb.2013.02.017.

    Article  CAS  PubMed  Google Scholar 

  • Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T., & Neumann, S. (2012). CAMERA: An integrated strategy for compound spectra extraction and annotation of LC/MS data sets. Analytical Chemistry, 84(1), 283–289. doi:10.1021/ac202450g.

    Article  CAS  PubMed  Google Scholar 

  • Kuligowski, J., Sanchez-Illana, A., Sanjuan-Herraez, D., Vento, M., & Quintas, G. (2015). Intra-batch effect correction in liquid chromatography-mass spectrometry using quality control samples and support vector regression (QC-SVRC). Analyst, 140(22), 7810–7817. doi:10.1039/c5an01638j.

    Article  CAS  PubMed  Google Scholar 

  • Kultima, K., Nilsson, A., Scholz, B., Rossbach, U. L., Fälth, M., & Andrén, P. E. (2009). Development and evaluation of normalization methods for label-free relative quantification of endogenous peptides. Molecular & Cellular Proteomics: MCP, 8(10), 2285–2295. doi:10.1074/mcp.M800514-MCP200.

    Article  CAS  PubMed Central  Google Scholar 

  • Lahaie, M., Mess, J.-N., Furtado, M., & Garofolo, F. (2010). Elimination of LC–MS/MS matrix effect due to phospholipids using specific solid-phase extraction elution conditions. Bioanalysis, 2(6), 1011–1021. doi:10.4155/bio.10.65.

    Article  CAS  PubMed  Google Scholar 

  • León, Z., García-Cañaveras, J. C., Donato, M. T., & Lahoz, A. (2013). Mammalian cell metabolomics: Experimental design and sample preparation. Electrophoresis, 34(19), 2762–2775. doi:10.1002/elps.201200605.

    PubMed  Google Scholar 

  • Lorenz, M. A., Burant, C. F., & Kennedy, R. T. (2011). Reducing time and increasing sensitivity in sample preparation for adherent mammalian cell metabolomics. Analytical Chemistry, 83(9), 3406–3414. doi:10.1021/ac103313x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, W., Clasquin, M. F., Melamud, E., Amador-Noguez, D., Caudy, A. A., & Rabinowitz, J. D. (2011). NIH public access. Analytical Chemistry, 82(8), 3212–3221. doi:10.1021/ac902837x.Metabolomic.

    Article  CAS  Google Scholar 

  • Madsen, R., Lundstedt, T., & Trygg, J. (2010). Chemometrics in metabolomics—A review in human disease diagnosis. Analytica Chimica Acta, 659(1–2), 23–33. doi:10.1016/j.aca.2009.11.042.

    Article  CAS  PubMed  Google Scholar 

  • Martano, G., Delmotte, N., Kiefer, P., Christen, P., Kentner, D., Bumann, D., & Vorholt, J. A. (2014). Fast sampling method for mammalian cell metabolic analyses using liquid chromatography–mass spectrometry. Nature Protocols, 10(1), 1–11. doi:10.1038/nprot.2014.198.

    Article  PubMed  CAS  Google Scholar 

  • Martin, J.-C., Maillot, M., Mazerolles, G., Verdu, A., Lyan, B., Migné, C., et al. (2015). Can we trust untargeted metabolomics? Results of the metabo-ring initiative, a large-scale, multi-instrument inter-laboratory study. Metabolomics, 11(4), 807–821. doi:10.1007/s11306-014-0740-0.

    Article  CAS  PubMed  Google Scholar 

  • Michopoulos, F., Lai, L., Gika, H., Theodoridis, G., & Wilson, I. (2009). UPLC MS based analysis of human plasma for metabonomics using solvent precipitation or solid phase extraction. Journal of Proteome Research, 8(4), 2114–2121. doi:10.1021/pr801045q.

    Article  CAS  PubMed  Google Scholar 

  • Moco, S., Vervoort, J., Moco, S., Bino, R. J., De Vos, R. C. H., & Bino, R. (2007). Metabolomics technologies and metabolite identification. TrAC —Trends in Analytical Chemistry, 26(9), 855–866. doi:10.1016/j.trac.2007.08.003.

    Article  CAS  Google Scholar 

  • Naz, S., García, A., & Barbas, C. (2013a). Multiplatform analytical methodology for metabolic fingerprinting of lung tissue. Analytical Chemistry, 85(22), 10941–10948. doi:10.1021/ac402411n.

    Article  CAS  PubMed  Google Scholar 

  • Naz, S., Garcia, A., Rusak, M., & Barbas, C. (2013b). Method development and validation for rat serum fingerprinting with CE-MS: Application to ventilator-induced-lung-injury study. Analytical and Bioanalytical Chemistry, 405(14), 4849–4858. doi:10.1007/s00216-013-6882-5.

    Article  CAS  PubMed  Google Scholar 

  • Naz, S., Vallejo, M., García, A., & Barbas, C. (2014). Method validation strategies involved in non-targeted metabolomics. Journal of Chromatography A, 1353, 99–105. doi:10.1016/j.chroma.2014.04.071.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson, J. K., & Lindon, J. C. (2008). Metabonomics. Nature, 455(October), 1054–1056.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica; The Fate of Foreign Compounds in Biological Systems, 29(11), 1181–1189. doi:10.1080/004982599238047.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, L. B. (2013). The bioanalytical challenge of determining unbound concentration and protein binding for drugs. Bioanalysis, 5(24), 3033–3050. doi:10.4155/bio.13.274.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson, L. B., & Schmidt, S. (2001). Simultaneous determination of total and free drug plasma concentrations combined with batch-wise pH-adjustment for the free concentration determinations. Journal of Pharmaceutical and Biomedical Analysis, 24(5–6), 921–927. doi:10.1016/S0731-7085(00)00560-4.

    Article  CAS  PubMed  Google Scholar 

  • Ogata, H., Goto, S., Sato, K., Fujubuchi, W., Bono, H., & Kanehisa, M. (1999). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 27(1), 29–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paglia, G., Magnúsdóttir, M., Thorlacius, S., Sigurjónsson, Ó. E., Gudmundsson, S., Palsson, B., & Thiele, I. (2012). Intracellular metabolite profiling of platelets: Evaluation of extraction processes and chromatographic strategies. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences, 898, 111–120. doi:10.1016/j.jchromb.2012.04.026.

    Article  CAS  PubMed  Google Scholar 

  • Pandher, R., Ducruix, C., Eccles, S. A., & Raynaud, F. I. (2009). Cross-platform Q-TOF validation of global exo-metabolomic analysis: Application to human glioblastoma cells treated with the standard PI 3-Kinase inhibitor LY294002. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences, 877(13), 1352–1358. doi:10.1016/j.jchromb.2008.12.001.

    Article  CAS  PubMed  Google Scholar 

  • Pedreschi, R., Hertog, M. L. A. T. M., Carpentier, S. C., Lammertyn, J., Robben, J., Noben, J. P., et al. (2008). Treatment of missing values for multivariate statistical analysis of gel-based proteomics data. Proteomics, 8(7), 1371–1383. doi:10.1002/pmic.200700975.

    Article  CAS  PubMed  Google Scholar 

  • Pereira, H., Martin, J.-F., Joly, C., Sébédio, J. L., & Pujos-Guillot, E. (2010). Development and validation of a UPLC/MS method for a nutritional metabolomic study of human plasma. Metabolomics, 6(2), 207–218. doi:10.1007/s11306-009-0188-9.

    Article  CAS  Google Scholar 

  • Phinney, K. W., Ballihaut, G., Bedner, M., Benford, B. S., Camara, J. E., Christopher, S. J., et al. (2013). Development of a standard reference material for metabolomics research. Analytical Chemistry, 85(24), 11732–11738. doi:10.1021/ac402689t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto, J., Domingues, M. R. M., Galhano, E., Pita, C., Almeida, M. D. C., Carreira, I. M., & Gil, A. M. (2014). Human plasma stability during handling and storage: Impact on NMR metabolomics. The Analyst, 139(5), 1168–1177. doi:10.1039/c3an02188b.

    Article  CAS  PubMed  Google Scholar 

  • Psychogios, N., Hau, D. D., Peng, J., Guo, A. C., Mandal, R., Bouatra, S., et al. (2011). The human serum metabolome. PLoS One, 6(2), e16957. doi:10.1371/journal.pone.0016957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi, X., Zhang, Y., Gao, J., Chen, T., Zhao, A., Yan, Y., & Jia, W. (2011). Metabolite profiling of hemodialysate using gas chromatography time-of-flight mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 55(5), 1142–1147. doi:10.1016/j.jpba.2011.04.001.

    Article  CAS  PubMed  Google Scholar 

  • Rafiei, A., & Sleno, L. (2014). Comparison of peak-picking workflows for untargeted liquid chromatography/high-resolution mass spectrometry metabolomics data analysis. Rapid Communications in Mass Spectrometry, 29(1), 119–127. doi:10.1002/rcm.7094.

    Article  CAS  Google Scholar 

  • Ramakrishnan, P., Nair, S., & Rangiah, K. (2016). A method for comparative metabolomics in urine using high resolution mass spectrometry. Journal of Chromatography A, 1443, 83–92. doi:10.1016/j.chroma.2016.02.080.

    Article  CAS  PubMed  Google Scholar 

  • Ramautar, R., & de Jong, G. J. (2014). Recent developments in liquid-phase separation techniques for metabolomics. Bioanalysis, 6, 1011–1026. doi:10.4155/bio.14.51.

    Article  CAS  PubMed  Google Scholar 

  • Rico, E., González, O., Blanco, M. E., & Alonso, R. M. (2014). Evaluation of human plasma sample preparation protocols for untargeted metabolic profiles analyzed by UHPLC-ESI-TOF-MS. Analytical and Bioanalytical Chemistry, 406(29), 7641–7652. doi:10.1007/s00216-014-8212-y.

    Article  CAS  PubMed  Google Scholar 

  • Robert, O., Sabatier, J., Desoubzdanne, D., Lalande, J., Balayssac, S., Gilard, V., et al. (2011). pH optimization for a reliable quantification of brain tumor cell and tissue extracts with (1)H NMR: focus on choline-containing compounds and taurine. Analytical and Bioanalytical Chemistry, 399(2), 987–999. doi:10.1007/s00216-010-4321-4.

    Article  CAS  PubMed  Google Scholar 

  • Rusilowicz, M., Dickinson, M., Charlton, A., O’Keefe, S., & Wilson, J. (2016). A batch correction method for liquid chromatography–mass spectrometry data that does not depend on quality control samples. Metabolomics, 12(3), 1–11. doi:10.1007/s11306-016-0972-2.

    Article  CAS  Google Scholar 

  • Saccenti, E., Hoefsloot, H. C. J., Smilde, A. K., Westerhuis, J. A., & Hendriks, M. M. W. B. (2014). Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics, 10(3), 361–374. doi:10.1007/s11306-013-0598-6.

    Article  CAS  Google Scholar 

  • Salek, R. M., Steinbeck, C., Viant, M. R., Goodacre, R., & Dunn, W. B. (2013). The role of reporting standards for metabolite annotation and identification in metabolomic studies. GigaScience, 2(1), 13. doi:10.1186/2047-217X-2-13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sana, T. R., Roark, J. C., Li, X., Waddell, K., & Fischer, S. M. (2008). Molecular formula and METLIN personal metabolite database matching applied to the identification of compounds generated by LC/TOF-MS. Journal of Biomolecular Techniques, 19(4), 258–266.

    PubMed  PubMed Central  Google Scholar 

  • Sangster, T., Major, H., Plumb, R., Wilson, A. J., & Wilson, I. D. (2006). A pragmatic and readily implemented quality control strategy for HPLC-MS and GC–MS-based metabonomic analysis. The Analyst, 131(10), 1075–1078. doi:10.1039/b604498k.

    Article  CAS  PubMed  Google Scholar 

  • Sarafian, M. H., Gaudin, M., Lewis, M. R., Martin, F. P., Holmes, E., Nicholson, J. K., & Dumas, M. E. (2014). Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography–mass spectrometry. Analytical Chemistry, 86(12), 5766–5774. doi:10.1021/ac500317c.

    Article  CAS  PubMed  Google Scholar 

  • Scheel, I., Aldrin, M., Glad, I. K., Sørum, R., Lyng, H., & Frigessi, A. (2005). The influence of missing value imputation on detection of differentially expressed genes from microarray data. Bioinformatics, 21(23), 4272–4279. doi:10.1093/bioinformatics/bti708.

    Article  CAS  PubMed  Google Scholar 

  • Scheltema, R. A., Jankevics, A., Jansen, R. C., Swertz, M. A., & Breitling, R. (2011). PeakML/mzMatch: A file format, Java library, R library, and tool-chain for mass spectrometry data analysis. Analytical Chemistry, 83(7), 2786–2793. doi:10.1021/ac2000994.

    Article  CAS  PubMed  Google Scholar 

  • Simón-Manso, Y., Lowenthal, M. S., Kilpatrick, L. E., Sampson, M. L., Telu, K. H., Rudnick, P. A., et al. (2013). Metabolite profiling of a NIST standard reference material for human plasma (SRM 1950): GC–MS, LC–MS, NMR, and clinical laboratory analyses, libraries, and web-based resources. Analytical Chemistry, 85(24), 11725–11731. doi:10.1021/ac402503m.

    Article  PubMed  CAS  Google Scholar 

  • Smilde, A. K., Van der Werf, M. J., & Bijlsma, S. (2005). Fusion of mass spectrometry-based metabolomics data. Analytical Chemistry, 77(20), 6729. papers3://publication/uuid/D4413DC1-F642-419B-9706-6E027D8014A8.

  • Smilde, A. K., van der Werf, M. J., Schaller, J.-P., & Kistemaker, C. (2009). Characterizing the precision of mass-spectrometry-based metabolic profiling platforms. The Analyst, 134(11), 2281. doi:10.1039/b902242b.

    Article  CAS  PubMed  Google Scholar 

  • Smith, C., Elizabeth, J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. ACS Publications, 78(3), 779–787.

    CAS  Google Scholar 

  • Spagou, K., Tsoukali, H., Raikos, N., Gika, H., Wilson, I. D., & Theodoridis, G. (2010). Hydrophilic interaction chromatography coupled to MS for metabonomic/metabolomic studies. Journal of Separation Science, 33(6–7), 716–727. doi:10.1002/jssc.200900803.

    Article  CAS  PubMed  Google Scholar 

  • Sud, M., Fahy, E., Cotter, D., Brown, A., Dennis, E. A., Glass, C. K., et al. (2007). LMSD: LIPID MAPS structure database. Nucleic Acids Research, 35(suppl. 1), 527–532. doi:10.1093/nar/gkl838.

    Article  Google Scholar 

  • Sumner, L. W., Samuel, T., Noble, R., Gmbh, S. D., Barrett, D., Beale, M. H., & Hardy, N. (2007). Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics, 3(3), 211–221. doi:10.1007/s11306-007-0082-2.Proposed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sysi-Aho, M., Katajamaa, M., Yetukuri, L., & Oresic, M. (2007). Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinformatics, 8, 93. doi:10.1186/1471-2105-8-93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szymańska, E., Saccenti, E., Smilde, A. K., & Westerhuis, J. A. (2012). Double-check: Validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics, 8(1), 3–16. doi:10.1007/s11306-011-0330-3.

    Article  PubMed  CAS  Google Scholar 

  • T’Kindt, R., Alaerts, G., Heyden, Y. Vander, Deforce, D., & Van Bocxlaer, J. (2007). Broad-spectrum separations in metabolomics using enhanced polar LC stationary phases: A dedicated evaluation using plant metabolites. Journal of Separation Science, 30(13), 2002–2011. doi:10.1002/jssc.200700077.

    Article  PubMed  CAS  Google Scholar 

  • Taguchi, R., Nishijima, M., & Shimizu, T. (2007). Basic analytical systems for lipidomics by mass spectrometry in Japan. Methods in Enzymology, 432(07), 185–211. doi:10.1016/S0076-6879(07)32008-9.

    Article  CAS  PubMed  Google Scholar 

  • Teahan, O., Gamble, S., Holmes, E., Waxman, J., Nicholson, J. K., Bevan, C., & Keun, H. C. (2006). Impact of analytical bias in metabonomic studies of human blood serum and plasma. Analytical Chemistry, 78(13), 4307–4318. doi:10.1021/ac051972y.

    Article  CAS  PubMed  Google Scholar 

  • Telu, K. H., Yan, X., Wallace, W. E., Stein, S. E., & Simón-Manso, Y. (2016). Analysis of human plasma metabolites across different liquid chromatography/mass spectrometry platforms: Cross-platform transferable chemical signatures. Rapid Communications in Mass Spectrometry, 30(5), 581–593. doi:10.1002/rcm.7475.

    Article  CAS  PubMed  Google Scholar 

  • Teng, Q., Huang, W., Collette, T. W., Ekman, D. R., & Tan, C. (2009). A direct cell quenching method for cell-culture based metabolomics. Metabolomics, 5(2), 199–208. doi:10.1007/s11306-008-0137-z.

    Article  CAS  Google Scholar 

  • Theodoridis, G. A., Gika, H. G., Want, E. J., & Wilson, I. D. (2012). Liquid chromatography-mass spectrometry based global metabolite profiling: A review. Analytica Chimica Acta, 711, 7–16. doi:10.1016/j.aca.2011.09.042.

    Article  CAS  PubMed  Google Scholar 

  • Trygg, J., Holmes, E., & Lundstedt, T. (2007). Chemometrics in metabonomics. Journal of Proteome Research, 6(2), 469–479. doi:10.1021/pr060594q.

    Article  CAS  PubMed  Google Scholar 

  • Tulipani, S., Llorach, R., Urpi-Sarda, M., & Andres-Lacueva, C. (2013). Comparative analysis of sample preparation methods to handle the complexity of the blood fluid metabolome: When less is more. Analytical Chemistry, 85(1), 341–348. doi:10.1021/ac302919t.

    Article  CAS  PubMed  Google Scholar 

  • Tulipani, S., Mora-Cubillos, X., Jáuregui, O., Llorach, R., García-Fuentes, E., Tinahones, F. J., & Andres-Lacueva, C. (2015). New and vintage solutions to enhance the plasma metabolome coverage by LC-ESI-MS untargeted metabolomics. The not-so-simple process of method performance evaluation. Analytical Chemistry, 87(5), 2639–2647. doi:10.1021/ac503031d.

    Article  CAS  PubMed  Google Scholar 

  • van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics, 7, 142. doi:10.1186/1471-2164-7-142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Der Kloet, F. M., Bobeldijk, I., Verheij, E. R., & Jellema, R. H. (2009). Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping. Journal of Proteome Research, 8(11), 5132–5141. doi:10.1021/pr900499r.

    Article  PubMed  CAS  Google Scholar 

  • Veselkov, K. A., Vingara, L. K., Masson, P., Robinette, S. L., Want, E., Li, J. V., et al. (2011). Optimized preprocessing of ultra-performance liquid chromatography/mass spectrometry urinary metabolic profiles for improved information recovery. Analytical Chemistry, 83, 5864–5872.

    Article  CAS  PubMed  Google Scholar 

  • Viant, M. R., Bearden, D. W., Bundy, J. G., Burton, I. W., Collette, T. W., Ekman, D. R., et al. (2008). International NMR-based environmental metabolomics intercomparison exercise. Environmental Science and Technology, 43(1), 219–225. doi:10.1021/es802198z.

    Article  CAS  Google Scholar 

  • Vorkas, P. A., Isaac, G., Anwar, M. A., Davies, A. H., Want, E. J., & Holmes, E. (2015). Untargeted UPLC-MS profiling pipeline to expand tissue metabolome coverage: Application to cardiovascular disease. Analytical Chemistry, 87(8), 4184–4193. doi:10.1021/ac503775m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuckovic, D. (2012). Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry, 403(6), 1523–1548. doi:10.1007/s00216-012-6039-y.

    Article  CAS  PubMed  Google Scholar 

  • Want, E. J. (2009). Challenges in applying chemometrics to LC-MS-based global metabolite profile data. Bioanalysis, 1(4), 805–819. doi:10.4155/bio.09.64.

    Article  CAS  PubMed  Google Scholar 

  • Want, E. J., & Masson, P. (2011). Processing and analysis of GC/LC-MS-based metabolomics data. Methods in Molecular Biology, 708(4), 321–334. doi:10.1007/978-1-61737-985-7.

    Google Scholar 

  • Want, E. J., Wilson, I. D., Gika, H., Theodoridis, G., Plumb, R. S., Shockcor, J., et al. (2010). Global metabolic profiling procedures for urine using UPLC-MS. Nature Protocols, 5(6), 1005–1018. doi:10.1038/nprot.2010.50.

    Article  CAS  PubMed  Google Scholar 

  • Ward, J. L., Baker, J. M., Miller, S. J., Deborde, C., Maucourt, M., Biais, B., et al. (2010). An inter-laboratory comparison demonstrates that [1H]-NMR metabolite fingerprinting is a robust technique for collaborative plant metabolomic data collection. Metabolomics, 6(2), 263–273. doi:10.1007/s11306-010-0200-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wedge, D. C., Allwood, J. W., Dunn, W. B., Vaughan, A. A., Simpson, K., Brown, M., et al. (2011). Is serum or plasma more appropriate for inter-subject assessment in patients with small-cell lung cancer. Analytical Chemistry, 83, 6689–6697.

    Article  CAS  PubMed  Google Scholar 

  • Wehrens, R., Jos Hageman, B. A., Fred van Eeuwijk, B., Rik Kooke, B., Pádraic Flood, B. J., Erik Wijnker, B., et al. (2016). Improved batch correction in untargeted MS-based metabolomics. Metabolomics,. doi:10.1007/s11306-016-1015-8.

    PubMed  PubMed Central  Google Scholar 

  • Westerhuis, J. A., Hoefsloot, H. C. J., Smit, S., Vis, D. J., Smilde, A. K., Velzen, E. J. J., et al. (2008a). Assessment of PLSDA cross validation. Metabolomics, 4(1), 81–89. doi:10.1007/s11306-007-0099-6.

    Article  CAS  Google Scholar 

  • Westerhuis, J. A., van Velzen, E. J. J., Hoefsloot, H. C. J., & Smilde, A. K. (2008b). Discriminant Q2 (DQ2) for improved discrimination in PLSDA models. Metabolomics, 4(4), 293–296. doi:10.1007/s11306-008-0126-2.

    Article  CAS  Google Scholar 

  • Westerhuis, J. A., van Velzen, E. J. J., Hoefsloot, H. C. J., & Smilde, A. K. (2010). Multivariate paired data analysis: Multilevel PLSDA versus OPLSDA. Metabolomics, 6(1), 119–128. doi:10.1007/s11306-009-0185-z.

    Article  CAS  PubMed  Google Scholar 

  • Wheelock, Å. M., & Wheelock, C. E. (2013). Trials and tribulations of’omics data analysis: Assessing quality of SIMCA-based multivariate models using examples from pulmonary medicine. Molecular BioSystems, 9(11), 2589–2596. doi:10.1039/c3mb70194h.

    Article  CAS  PubMed  Google Scholar 

  • Whiley, L., Godzien, J., Ruperez, F. J., Legido-Quigley, C., & Barbas, C. (2012). In-vial dual extraction for direct LC-MS analysis of plasma for comprehensive and highly reproducible metabolic fingerprinting. Analytical Chemistry, 84(14), 5992–5999. doi:10.1021/ac300716u.

    Article  CAS  PubMed  Google Scholar 

  • Wishart, D. S. (2009). Computational strategies for metabolite identification in metabolomics. Bioanalysis, 1(9), 1579–1596. doi:10.4155/bio.09.138.

    Article  CAS  PubMed  Google Scholar 

  • Wishart, D. S. (2011). Advance in metabolite identification. Bioanalysis, 3(15), 1769–1782.

    Article  CAS  PubMed  Google Scholar 

  • Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y., et al. (2013). HMDB 3.0—The human metabolome database in 2013. Nucleic Acids Research, 41(D1), 801–807. doi:10.1093/nar/gks1065.

    Article  CAS  Google Scholar 

  • Wishart, D. S., Knox, C., Guo, A. C., Eisner, R., Young, N., Gautam, B., et al. (2009). HMDB: A knowledgebase for the human metabolome. Nucleic Acids Research, 37(suppl. 1), 603–610. doi:10.1093/nar/gkn810.

    Article  CAS  Google Scholar 

  • Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130. doi:10.1016/S0169-7439(01)00155-1.

    Article  CAS  Google Scholar 

  • Xia, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37(suppl. 2), 652–660. doi:10.1093/nar/gkp356.

    Article  CAS  Google Scholar 

  • Xia, J., & Wishart, D. S. (2011). Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nature Protocols, 6(6), 743–760. doi:10.1038/nprot.2011.319.

    Article  CAS  PubMed  Google Scholar 

  • Yang, W., Chen, Y., Xi, C., Zhang, R., Song, Y., Zhan, Q., et al. (2013). Liquid chromatography−tandem mass spectrometry-based plasma metabonomics delineate the effect of metabolites’ stability on reliability of potential biomarkers. Analytical Chemistry, 85, 2606–2610.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., Zhao, X., Lu, X., Lin, X., & Xu, G. (2015). A data preprocessing strategy for metabolomics to reduce the mask effect in data analysis. Frontiers in Molecular Biosciences, 2(February), 4. doi:10.3389/fmolb.2015.00004.

    PubMed  PubMed Central  Google Scholar 

  • Yin, P., Lehmann, R., & Xu, G. (2015). Effects of pre-analytical processes on blood samples used in metabolomics studies. Analytical and Bioanalytical Chemistry, 407, 4879–4892. doi:10.1007/s00216-015-8565-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, Z., Kastenmüller, G., He, Y., Belcredi, P., Möller, G., Prehn, C., et al. (2011). Differences between human plasma and serum metabolite profiles. PLoS One, 6(7), 1–6. doi:10.1371/journal.pone.0021230.

    Google Scholar 

  • Zelena, E., Dunn, W. B., Broadhurst, D., Francis-McIntyre, S., Carroll, K. M., Begley, P., et al. (2009). Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum. Analytical Chemistry, 81(4), 1357–1364. doi:10.1021/ac8019366.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael K. R. Engskog.

Ethics declarations

Conflict of Interest

Mikael K. R. Engskog, Jakob Haglöf, Torbjörn Arvidsson and Curt Pettersson declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engskog, M.K.R., Haglöf, J., Arvidsson, T. et al. LC–MS based global metabolite profiling: the necessity of high data quality. Metabolomics 12, 114 (2016). https://doi.org/10.1007/s11306-016-1058-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-016-1058-x

Keywords

Navigation