Skip to main content
Log in

Development and validation of a UPLC/MS method for a nutritional metabolomic study of human plasma

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

In order to study the effect of a diet on metabolites found in body fluids such as plasma, we have developed and validated a UPLC/MS method. While methods using NMR have been well established to analyse different biological tissues, recent studies have described robust untargeted UPLC-MS methods for plasma analysis. One major concern when profiling plasma is the presence of an important quantity of proteins which have to be precipitated without any loss of metabolites prior to LC/MS analysis. The utilization of untargeted approaches in nutritional metabolomics still suffers from the lack of identification of specific biomarkers. We therefore suggest an alternative method still using a global approach but focusing at the same time on metabolites previously described in human plasma in order to detect biomarkers of metabolic dysregulations. Thus, to fulfil our objectives, analytical parameters were tested (i) the anticoagulant type for sample collection, (ii) the protein precipitation method and (iii) UPLC/MS analytical conditions. Three protein precipitation methods and two anticoagulants were tested and compared. The method utilizing blood collection on heparin and methanol precipitation was chosen for giving the most reproducible results while keeping the complexity of the sample. Finally, a validation was proposed to evaluate the stability of this analytical method applied to a large batch of samples for nutritional metabolomic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • FDA. (May 2001) Guidance for industry, Bioanalytical method validation. Rockville: Food and drug administration, Center for Drug Evaluation and research (CDER).

  • America, A. H. P., Cordewener, J. H. G., van Geffen, M. H. A., Lommen, A., Vissers, J. P. C., Bino, R. J., et al. (2006). Alignment and statistical difference analysis of complex peptide data sets generated by multidimensional LC-MS. Proteomics, 6, 641–653.

    Article  CAS  PubMed  Google Scholar 

  • Benton, H. P., Wong, D. M., Trauger, S. A., & Siuzdak, G. (2008). XCMS2: Processing tandem mass spectrometry data for metabolite identification and structural characterization. Analytical Chemistry, 80, 6382–6389.

    Article  CAS  PubMed  Google Scholar 

  • Boernsen, K. O., Gatzek, S., & Imbert, G. (2005). Controlled protein precipitation in combination with chip-based nanospray infusion mass spectrometry. An approach for metabolomics profiling of plasma. Analytical Chemistry, 77, 7255–7264.

    Article  CAS  PubMed  Google Scholar 

  • Bruce, S. J., Jonsson, P., Antti, H., Cloarec, O., Trygg, J., Marklund, S. L., et al. (2008). Evaluation of a protocol for metabolic profiling studies on human blood plasma by combined ultra-performance liquid chromatography/mass spectrometry: From extraction to data analysis. Analytical Biochemistry, 372, 237–249.

    Article  CAS  PubMed  Google Scholar 

  • Bruce, S. J., Tavazzi, I., Parisod, V., Rezzi, S., Kochhar, S., & Guy, P. A. (2009). Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Analytical Chemistry, 81, 3285–3296.

    Article  CAS  PubMed  Google Scholar 

  • Chambers, E., Wagrowski-Diehl, D. M., Lu, Z., & Mazzeo, J. R. (2007). Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. Journal of Chromatography B, 852, 22–34.

    Article  CAS  Google Scholar 

  • Chernushevich, I. V., Loboda, A. V., & Thomson, B. A. (2001). An introduction to quadrupole-time-of-flight mass Spectrometry. Journal of Mass Spectrometry and Ion Physics, 36, 849–865.

    CAS  Google Scholar 

  • Churchwell, M. I., Twaddle, N. C., Meeker, L. R., & Doerge, D. R. (2005). Improving LC-MS sensitivity through increases in chromatographic performance: Comparisons of UPLC-ES/MS/MS to HPLC-ES/MS/MS. Journal of Chromatography B, 825, 134–143.

    Article  CAS  Google Scholar 

  • De Villiers, A., Lestremau, F., Szucs, R., Gélébart, S., David, F., & Sandra, P. (2006). Evaluation of ultra performance liquid chromatography: Part I. Possibilities and limitations. Journal of Chromatography A, 1127, 60–69.

    Article  PubMed  Google Scholar 

  • De Vos, C. H. R., Moco, S., Lommen, A., Keurentjes, J. J., Bino, R. J., & Hall, R. D. (2007). Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols, 2, 778–791.

    Article  PubMed  Google Scholar 

  • Dettmer, K., Pavel, A. A., & Hammock, B. D. (2007). Mass spectrometry based metabolomics. Mass Spectrometry Reviews, 26, 51–78.

    Article  CAS  PubMed  Google Scholar 

  • Dumas, M.-E., Barton, R. H., Toye, A., Cloarec, O., Blancher, C., Rothwell, A., et al. (2006). Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. PNAS, 103, 12511–12516.

    Article  CAS  PubMed  Google Scholar 

  • Fardet, A., Llorach, R., Martin, J. F., Besson, C., Lyan, B., Pujos-Guillot, E., et al. (2008). A liquid chromatography-quadrupole time-of-flight (LC-QTOF)-based metabolomic approach reveals new metabolic effects of catechin in rats fed high-fat diets. Journal of Proteome Research, 7, 2388–2398.

    Article  CAS  PubMed  Google Scholar 

  • Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature, 18, 1157–1161.

    Article  CAS  Google Scholar 

  • German, J. B., Roberts, M. A., Fay, L., & Watkins, S. M. (2002). Metabolomics and individual metabolic assessment: The next great challenge for nutrition. Journal of Nutrition, 132, 2486–2487.

    CAS  PubMed  Google Scholar 

  • Gibney, M. J., & Gibney, E. R. (2004). Symposium on ‘implications for dietary guidelines of genetic influences on requirements’ diet, genes and disease: Implications for nutrition policy. Proceedings of the Nutrition Society, 63, 491–500.

    Article  PubMed  Google Scholar 

  • Gibney, M. J., Walsh, M., Brennan, L., Roche, H. M., German, J. B., & Van Ommen, B. (2005). Metabolomics in human nutrition: Opportunities and challanges. American Journal of Clinical Nutrition, 82, 497–503.

    CAS  PubMed  Google Scholar 

  • Gika, H., Macpherson, E., Theodoridis, G., & Wilson, I. D. (2008). Evaluation of the repeatability of ultra-performance liquid chromatography-TOF-MS for global metabolic profiling of human urine samples. Journal of Chromatography B, 871, 299–305.

    Article  CAS  Google Scholar 

  • Guo, Z., Yarasheski, K., & Jensen, M. D. (2006). High-precision isotopic analysis of palmitoylcarnitine by liquid chromatography/electrospray ionization ion-trap tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 20, 3361–3366.

    Article  CAS  PubMed  Google Scholar 

  • Guy, P. A., Tavazzi, I., Bruce, S. J., Ramadan, Z., & Kochhar, S. (2008). Global metabolic profiling analysis on human urine by UPLC-TOFMS: Issues and method validation in nutritional metabolomics. Journal of Chromatography B, 871, 253–260.

    Article  CAS  Google Scholar 

  • Houjou, T., Kotoko, Y., Masayoshi, I., Takao, S., & Ryo, T. (2005). A shotgun tandem mass spectrometric analysis of phospholipids with normal-phase and/or reverse-phase liquid chromatography/electrospray ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 19, 654–666.

    Article  CAS  PubMed  Google Scholar 

  • Idle, J. R., & Gonzalez, F. J. (2007). Metabolomics. Cell Metabolism, 6, 348–351.

    Article  CAS  PubMed  Google Scholar 

  • Jonsson, P., Gullberg, J., Nordstrom, A., Kusano, M., Kowalczyk, M., Sjostrom, T., et al. (2004). A strategy for identifying differences in large series of metabolomic samples analyzed by GC/MS. Analytical Chemistry, 76, 1738–1745.

    Article  CAS  PubMed  Google Scholar 

  • Koutsari, C., & Jensen, M. D. (2006). Thematic review series: Patient-oriented research. Free fatty acid metabolism in human obesity. Journal of Lipid Research, 47, 1643–1650.

    Article  CAS  PubMed  Google Scholar 

  • Lawton, K. A., Berger, A., Mitchell, M., Milgram, K. E., Evans, A. M., Guo, L. N., et al. (2008). Analysis of the adult human plasma metabolome. Pharmacogen, 9, 383–397.

    Article  CAS  Google Scholar 

  • Lenz, W. (2007). Analytical strategies in metabonomics. Journal of Proteome Research, 6, 443–458.

    Article  CAS  PubMed  Google Scholar 

  • Liebisch, G., Drobnik, W., Lieser, B., & Schmitz, G. (2002). High-throughput quantification of lysophosphatidylcholine by electrospray ionization tandem mass spectrometry. Clinical Chemistry, 48, 2217–2224.

    CAS  PubMed  Google Scholar 

  • Liebisch, G., Lieser, B., Rathenberg, J., Drobnik, W., & Schmitz, G. (2004). High-throughput quantification of phosphatidylcholine and sphingomyelin by electrospray ionization tandem mass spectrometry coupled with isotope correction algorithm. Biochimica et Biophysica Acta—Molecular and Cell Biology of Lipids, 1686, 108–117.

    Article  CAS  Google Scholar 

  • Lindon, J. C., & Nicholson, J. K. (2008). Analytical technologies for metabonomics and metabolomics, and multi-omic information recovery. TrAC, 27, 194–204.

    CAS  Google Scholar 

  • Ma, L., Luo, H., Dai, J., & Carr, P. W. (2006). Development of acid stable, hyper-crosslinked, silica-based reversed-phase liquid chromatography supports for the separation of organic bases. Journal of Chromatography A, 1114, 21–28.

    Article  CAS  PubMed  Google Scholar 

  • Maher, A. D., Zirah, S. F. M., Holmes, E., & Nicholson, J. K. (2007). Experimental and analytical variation in human urine in 1H NMR spectroscopy-based metabolic phenotyping studies. Analytical Chemistry, 79, 5204–5211.

    Article  CAS  PubMed  Google Scholar 

  • Major, H., Williams, R., Wilson, A., & Wilson, I. (2006). A metabonomic analysis of plasma from Zucker rat strains using gas chromatography/mass spectrometry and pattern recognition. Rapid Communications in Mass Spectrometry, 20, 3295–3302.

    Article  CAS  PubMed  Google Scholar 

  • Michopoulos, F., Lai, L., Gika, H., Theodoridis, G., & Wilson, I. (2009). UPLC-MS-based analysis of human plasma for metabonomics using solvent precipitation or solid phase extraction. Journal of Proteome Research, 8, 2114–2121.

    Article  CAS  PubMed  Google Scholar 

  • Moco, S., Bino, R. J., Vos, R. C. H. D., & Vervoort, J. (2007). Metabolomics technologies and metabolite identification. TrAC, 26, 855–866.

    CAS  Google Scholar 

  • Nicholson, J. K., & Foxall, P. (1995). 750 MHz 1H and 1H 13C NMR spectroscopy of human blood plasma. Analytical Chemistry, 67, 793–811.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29, 1181–1189.

    Article  CAS  PubMed  Google Scholar 

  • Nordstrom, A., O’Maille, G., Qin, C., & Siuzdak, G. (2006). Nonlinear data alignment for UPLC-MS and HPLC-MS based metabolomics: Quantitative analysis of endogenous and exogenous metabolites in human serum. Analytical Chemistry, 78, 3289–3295.

    Article  PubMed  Google Scholar 

  • Pietilainen, K. H., Sysi-Aho, M., Rissanen, A., Seppanen-Laakso, T., Yki-Jarvinen, H., Kaprio, J., et al. (2007). Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects–a monozygotic twin study. PLoS ONE, 5, 472–483.

    Google Scholar 

  • Piraud, M., Vianey-Saban, C., Petritis, K., Elfakir, C., Steghens, J. P., Morla, A., et al. (2003). ESI-MS/MS analysis of underivatised amino acids: A new tool for the diagnosis of inherited disorders of amino acid metabolism. Fragmentation study of 79 molecules of biological interest in positive and negative ionisation mode. Rapid Communications in Mass Spectrometry, 17, 1297–1311.

    Article  CAS  PubMed  Google Scholar 

  • Plumb, R. S., Johnson, K. A., Rainville, P. D., Shockcor, J. P., Williams, R., Granger, J. H., et al. (2006a). The detection of phenotypic differences in the metabolic plasma profile of three strains of Zucker rats at 20 weeks of age using ultra-performance liquid chromatography/orthogonal acceleration time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 20, 2800–2806.

    Article  CAS  PubMed  Google Scholar 

  • Plumb, R. S., Johnson, K. A., Rainville, P. D., Smith, B. W., Wilson, I. D., Castro-Perez, J. M., et al. (2006b). UPLC/MS; a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Communications in Mass Spectrometry, 20, 1989–1994.

    Article  CAS  PubMed  Google Scholar 

  • Rezzi, S., Ramadan, Z., Fay, L. B., & Kochlar, S. (2006). Nutritional metabonomics: Applications and perspectives. Journal of Proteome Research. Reviews, 6, 513–525.

    Article  Google Scholar 

  • Sadagopan, N. P., Li, W., Cook, J. A., Galvan, J. A., Weller, D. L., Fountain, S. T., et al. (2003). Investigation of EDTA anticoagulant in plasma to improve the throughput of liquid chromatography/tandem mass spectrometric assays. Rapid Communications in Mass Spectrometry, 17, 1065–1070.

    Article  CAS  PubMed  Google Scholar 

  • Sébedio, J. L., Martin, J. F., & Pujos, E. (2008). Nutritional metabolomics: What are the perspectives? OCL, 15, 341–345.

    Google Scholar 

  • Skeaff, C. M., Hodson, L., & McKenzie, J. E. (2006). Dietary-induced changes in fatty acid composition of human plasma, platelet, and erythrocyte lipids follow a similar time course. Journal of Nutrition, 136, 565–569.

    CAS  PubMed  Google Scholar 

  • Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787.

    Article  CAS  PubMed  Google Scholar 

  • Tikunov, Y., Lommen, A., de Vos, C. H. R., Verhoeven, H. A., Bino, R. J., Hall, R. D., et al. (2005). A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiology, 139, 1125–1137.

    Article  CAS  PubMed  Google Scholar 

  • Van De Steene, J. C., & Lambert, W. E. (2008). Comparaison of matrix effects in HPLC-MS/MS and UPLC-MS/MS analysis of nine basic pharmaceuticals in surface waters. American Society for Mass Spectrometry, 19, 713–718.

    Article  Google Scholar 

  • Want, E., O’Maille, G., Smith, C., Brandon, T., Uritboonthai, W., Qin, C., et al. (2006). Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Analytical Chemistry, 78, 743–752.

    Article  CAS  PubMed  Google Scholar 

  • Watkins, S. M., Hammock, B. D., Newman, J. W., & German, J. B. (2001). Individual metabolism should guide agriculture toward foods for improved health and nutrition. American Journal of Clinical Nutrition, 74, 283–286.

    CAS  PubMed  Google Scholar 

  • Wilson, I. D., Plumb, R., Granger, J., Major, H., Williams, R., & Lenz, E. M. (2005). HPLC-MS-based methods for the study of metabonomics. Journal of Chromatography B, 817, 67–76.

    Article  CAS  Google Scholar 

  • Wong, M. C. Y., Lee, W. T. K., Wong, J. S. Y., Frost, G., & Lodge, J. (2008). An approach towards method development for untargeted urinary metabolite profiling in metabonomic research using UPLC/QToF MS. Journal of Chromatography B, 871, 341–348.

    Article  CAS  Google Scholar 

  • Zelena, E., Dunn, W. B., Broadhurst, D., Francis-McIntyre, S., Carroll, K. M., Begley, P., et al. (2009). Development of a robust and repeatable UPLC; MS method for the long-term metabolomic study of human serum. Analytical Chemistry, 81, 1357–1364.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the ANR (METAPROFILE project) for financial support. HP, EPG and JLS wish to acknowledge extensive discussion with Jean Philippe Antignac, Olivier Berdeaux and Christophe Junot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estelle Pujos-Guillot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, H., Martin, JF., Joly, C. et al. Development and validation of a UPLC/MS method for a nutritional metabolomic study of human plasma. Metabolomics 6, 207–218 (2010). https://doi.org/10.1007/s11306-009-0188-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-009-0188-9

Keywords

Navigation