Skip to main content

Extracting Knowledge from MS Clinical Metabolomic Data: Processing and Analysis Strategies

  • Protocol
Clinical Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1730))

Abstract

Assessing potential alterations of metabolic pathways using large-scale approaches today plays a central role in clinical research. Because several thousands of mass features can be measured for each sample with separation techniques hyphenated to mass spectrometry (MS) detection, adapted strategies should be implemented to detect altered pathways and help to elucidate the mechanisms of pathologies. These procedures include peak detection, sample alignment, normalization, statistical analysis, and metabolite annotation. Interestingly, considerable advances have been made over the last years in terms of analytics, bioinformatics, and chemometrics to help massive and complex metabolomic data to be more adequately handled with automated processing and data analysis workflows. Recent developments and remaining challenges related to MS signal processing, metabolite annotation, and biomarker discovery based on statistical models are illustrated in this chapter considering their application to clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ellis DI, Dunn WB, Griffin JL, Allwood JW, Goodacre R (2007) Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics 8(9):1243–1266. https://doi.org/10.2217/14622416.8.9.1243

    Article  PubMed  CAS  Google Scholar 

  2. Clayton TA, Lindon JC, Cloarec O, Antti H, Charuel C, Hanton G, Provost JP, Le Net JL, Baker D, Walley RJ, Everett JR, Nicholson JK (2006) Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature 440(7087):1073–1077. https://doi.org/10.1038/nature04648

    Article  PubMed  CAS  Google Scholar 

  3. Boccard J, Veuthey JL, Rudaz S (2010) Knowledge discovery in metabolomics: an overview of MS data handling. J Sep Sci 33(3):290–304. https://doi.org/10.1002/jssc.200900609

    Article  PubMed  CAS  Google Scholar 

  4. Misra BB, van der Hooft JJJ (2016) Updates in metabolomics tools and resources: 2014–2015. Electrophoresis 37(1):86–110. https://doi.org/10.1002/elps.201500417

    Article  PubMed  CAS  Google Scholar 

  5. Jeanneret F, Boccard J, Badoud F, Sorg O, Tonoli D, Pelclova D, Vlckova S, Rutledge DN, Samer CF, Hochstrasser D, Saurat JH, Rudaz S (2014) Human urinary biomarkers of dioxin exposure: analysis by metabolomics and biologically driven data dimensionality reduction. Toxicol Lett 230(2):234–243. https://doi.org/10.1016/j.toxlet.2013.10.031

    Article  PubMed  CAS  Google Scholar 

  6. Krishnan S, Vogels JTWE, Coulier L, Bas RC, Hendriks MWB, Hankemeier T, Thissen U (2012) Instrument and process independent binning and baseline correction methods for liquid chromatography-high resolution-mass spectrometry deconvolution. Anal Chim Acta 740:12–19. https://doi.org/10.1016/j.aca.2012.06.014

    Article  PubMed  CAS  Google Scholar 

  7. Castillo S, Gopalacharyulu P, Yetukuri L, Oresic M (2011) Algorithms and tools for the preprocessing of LC-MS metabolomics data. Chemometr Intell Lab 108(1):23–32. https://doi.org/10.1016/j.chemolab.2011.03.010

    Article  CAS  Google Scholar 

  8. Lange E, Tautenhahn R, Neumann S, Gropl C (2008) Critical assessment of alignment procedures for LC-MS proteomics and metabolomics measurements. BMC Bioinformatics 9. https://doi.org/10.1186/1471-2105-9-375

  9. Tomasi G, Savorani F, Engelsen SB (2011) Icoshift: an effective tool for the alignment of chromatographic data. J Chromatogr A 1218(43):7832–7840. https://doi.org/10.1016/j.chroma.2011.08.086

    Article  PubMed  CAS  Google Scholar 

  10. Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, Brown M, Knowles JD, Halsall A, Haselden JN, Nicholls AW, Wilson ID, Kell DB, Goodacre R, C HSMH (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6(7):1060–1083. https://doi.org/10.1038/nprot.2011.335

    Article  PubMed  CAS  Google Scholar 

  11. van den Berg RA, Hoefsloot HCJ, Westerhuis JA, Smilde AK, van der Werf MJ (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7. https://doi.org/10.1186/1471-2164-7-142

  12. Boccard J, Rudaz S (2014) Harnessing the complexity of metabolomic data with chemometrics. J Chemometr 28(1):1–9. https://doi.org/10.1002/Cem.2567

    Article  CAS  Google Scholar 

  13. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–441. https://doi.org/10.1037/h0071325

    Article  Google Scholar 

  14. Wold S, Sjostrom M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab 58(2):109–130. https://doi.org/10.1016/S0169-7439(01)00155-1

    Article  CAS  Google Scholar 

  15. Trygg J, Wold S (2002) Orthogonal projections to latent structures (O-PLS). J Chemometr 16(3):119–128. https://doi.org/10.1002/Cem.695

    Article  CAS  Google Scholar 

  16. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, TWM F, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3(3):211–221. https://doi.org/10.1007/s11306-007-0082-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Salek RM, Neumann S, Schober D, Hummel J, Billiau K, Kopka J, Correa E, Reijmers T, Rosato A, Tenori L, Turano P, Marin S, Deborde C, Jacob D, Rolin D, Dartigues B, Conesa P, Haug K, Rocca-Serra P, O'Hagan S, Hao J, van Vliet M, Sysi-Aho M, Ludwig C, Bouwman J, Cascante M, Ebbels T, Griffin JL, Moing A, Nikolski M, Oresic M, Sansone SA, Viant MR, Goodacre R, Gunther UL, Hankemeier T, Luchinat C, Walther D, Steinbeck C (2015) COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access. Metabolomics 11(6):1587–1597. https://doi.org/10.1007/s11306-015-0810-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Vinaixa M, Schymanski EL, Neumann S, Navarro M, Salek RM, Yanes O (2016) Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. Trends Anal Chem 78:23–35. https://doi.org/10.1016/j.trac.2015.09.005

    Article  CAS  Google Scholar 

  19. Lynn KS, Cheng ML, Chen YR, Hsu C, Chen A, Lih TM, Chang HY, Huang CJ, Shiao MS, Pan WH, Sung TY, Hsu WL (2015) Metabolite identification for mass spectrometry-based metabolomics using multiple types of correlated ion information. Anal Chem 87(4):2143–2151. https://doi.org/10.1021/ac503325c

    Article  PubMed  CAS  Google Scholar 

  20. Jeanneret F, Tonoli D, Hochstrasser D, Saurat JH, Sorg O, Boccard J, Rudaz S (2016) Evaluation and identification of dioxin exposure biomarkers in human urine by high-resolution metabolomics, multivariate analysis and in vitro synthesis. Toxicol Lett 240(1):22–31. https://doi.org/10.1016/j.toxlet.2015.10.004

    Article  PubMed  CAS  Google Scholar 

  21. Paglia G, Williams JP, Menikarachchi L, Thompson JW, Tyldesley-Worster R, Halldorsson S, Rolfsson O, Moseley A, Grant D, Langridge J, Palsson BO, Astarita G (2014) Ion mobility derived collision cross sections to support metabolomics applications. Anal Chem 86(8):3985–3993. https://doi.org/10.1021/ac500405x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Jeanneret F, Tonoli D, Rossier MF, Saugy M, Boccard J, Rudaz S (2016) Evaluation of steroidomics by liquid chromatography hyphenated to mass spectrometry as a powerful analytical strategy for measuring human steroid perturbations. J Chromatogr A 1430:97–112. https://doi.org/10.1016/j.chroma.2015.07.008

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Rudaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Boccard, J., Rudaz, S. (2018). Extracting Knowledge from MS Clinical Metabolomic Data: Processing and Analysis Strategies. In: Giera, M. (eds) Clinical Metabolomics. Methods in Molecular Biology, vol 1730. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7592-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7592-1_28

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7591-4

  • Online ISBN: 978-1-4939-7592-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics