Skip to main content

Advertisement

Log in

Cell line dependence of metabolite leakage in metabolome analyses of adherent normal and cancer cell lines

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Analysis of the metabolome can be sample and cell dependent. In this study, we compared two conventional pre-treatment approaches (trypsinization and cell scraping) in three adherently grown mammalian cell lines (two breast cancer cell lines MDA-MB-436, MCF-7 and an endothelial cell line—HMEC-1). We report experimental evidence, for the first time, demonstrating that metabolite leakage occurs with both treatments, and that the cell lines are differentially influenced. In addition, we examined two recently reported approaches of simultaneous quenching and extraction that showed minimal metabolome leakage. We also investigated the culture of cells on beads for rapid quenching and extraction, as a novel sample handling protocol. For metastatic breast cancer cells MDA-MB-436, the two direct quenching approaches and the bead harvesting approach showed favourable results with respect to metabolome leakage, compared to the conventional approaches. We characterised the recovery of eleven different classes of metabolites identified by gas chromatography–mass spectrometry in the cell extracts and the supernatants following quenching. Analysis of results based on metabolite classes is shown to be a useful approach aiding metabolomic interpretations. We also examined the effect of including a protein precipitation step on the metabolite classes detected. The de-proteinization step did not show significant improvement in overall recoveries. This investigation suggests that it is important to establish the level of metabolome leakage for the specific cell line investigated, irrespective of the methodology employed. Rapid approaches that combine quenching and extraction steps may be more effective in retaining valid metabolome data, with minimal metabolome leakage occurring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GC:

Gas chromatography

MS:

Mass spectrometry

GC–MS:

Gas chromatography–mass spectrometry

LC–MS:

Liquid chromatography–mass spectrometry

NMR:

Nuclear magnetic resonance spectroscopy

TIC:

Total ion current

PCA:

Principal component analysis

AP:

Acetone precipitation

NIST:

National Institute of Standards and Technology

GMD:

Golm metabolome database

AMDIS:

Automated mass spectral deconvolution and identification system

ATCC:

American type culture collection

Da:

Dalton

EDTA:

Ethylene di-amine tetra-acetic acid

MSTFA:

N-Methyl-N-(trimethylsilyl) trifluoroacetamide

LN2:

Liquid nitrogen

AMBIC:

Ammonium bicarbonate

PBS:

Phosphate-buffered saline

References

  • Aranibar, N., Borys, M., Mackin, N. A., Ly, V., Abu-Absi, N., Abu-Absi, S., et al. (2011). NMR-based metabolomics of mammalian cell and tissue cultures. Journal of Biomolecular NMR, 49(3), 195–206.

    Article  CAS  PubMed  Google Scholar 

  • Beloueche-Babari, M., Jackson, L. E., Al-Saffar, N. M. S., Eccles, S. A., Raynaud, F. I., Workman, P., et al. (2006). Identification of magnetic resonance detectable metabolic changes associated with inhibition of phosphoinositide 3-kinase signaling in human breast cancer cells. Molecular Cancer Therapeutics, 5(1), 187–196.

    Article  CAS  PubMed  Google Scholar 

  • Bi, H., Krausz, K., Manna, S., Li, F., Johnson, C., & Gonzalez, F. (2013). Optimization of harvesting, extraction, and analytical protocols for UPLC-ESI-MS-based metabolomic analysis of adherent mammalian cancer cells. Analytical and Bioanalytical Chemistry, 405(15), 5279–5289. doi:10.1007/s00216-013-6927-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce, S. J., Tavazzi, I., Parisod, V., Rezzi, S., Kochhar, S., & Guy, P. A. (2009). Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Analytical Chemistry, 81(9), 3285–3296.

    Article  CAS  PubMed  Google Scholar 

  • Dang, N.-H. T., Singla, A. K., Mackay, E. M., Jirik, F. R., & Weljie, A. M. (2014). Targeted cancer therapeutics: biosynthetic and energetic pathways characterized by metabolomics and the interplay with key cancer regulatory factors. Current Pharmaceutical Design, 20(15), 2637–2647.

    Article  CAS  PubMed  Google Scholar 

  • Danielsson, A. P. H., Moritz, T., Mulder, H., & Spégel, P. (2010). Development and optimization of a metabolomic method for analysis of adherent cell cultures. Analytical Biochemistry, 404(1), 30–39.

    Article  CAS  PubMed  Google Scholar 

  • Deja, S., Porebska, I., Kowal, A., Zabek, A., Barg, W., Pawelczyk, K., et al. (2014). Metabolomics provide new insights on lung cancer staging and discrimination from chronic obstructive pulmonary disease. Journal of Pharmaceutical and Biomedical Analysis, 100, 369–380.

    Article  CAS  PubMed  Google Scholar 

  • Dettmer, K., Nürnberger, N., Kaspar, H., Gruber, M. A., Almstetter, M. F., & Oefner, P. J. (2011). Metabolite extraction from adherently growing mammalian cells for metabolomics studies: optimization of harvesting and extraction protocols. Analytical and Bioanalytical Chemistry, 399(3), 1127–1139.

    Article  CAS  PubMed  Google Scholar 

  • Dietmair, S., Hodson, M. P., Quek, L. E., Timmins, N. E., Chrysanthopoulos, P., Jacob, S. S., et al. (2012). Metabolite profiling of CHO cells with different growth characteristics. Biotechnology and Bioengineering, 109, 1040–1414.

    Article  Google Scholar 

  • Dietmair, S., Timmins, N. E., Gray, P. P., Nielsen, L. K., & Krömer, J. O. (2010). Towards quantitative metabolomics of mammalian cells: Development of a metabolite extraction protocol. Analytical Biochemistry, 404(2), 155–164.

    Article  CAS  PubMed  Google Scholar 

  • Duan, X., Young, R., Straubinger, R. M., Page, B. J., Cao, J., Wang, H., et al. (2009). A straightforward and highly efficient precipitation/on-pellet digestion procedure coupled to a long gradient nano-lc separation and orbitrap mass spectrometry for label-free expression profiling of the swine heart mitochondrial proteome. Journal of Proteome Research, 8(6), 2838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte, N. C., Becker, S. A., Jamshidi, N., Thiele, I., Mo, M. L., Vo, T. D., et al. (2007). Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proceedings of the National Academy of Sciences, 104(6), 1777–1782.

    Article  CAS  Google Scholar 

  • Dwivedi, P., Wu, P., Klopsch, S. J., Puzon, G. J., Xun, L., & Hill, H. H. (2008). Metabolic profiling by ion mobility mass spectrometry (IMMS). Metabolomics, 4(1), 63–80.

    Article  CAS  Google Scholar 

  • Fiehn, O. (2002). Metabolomics–the link between genotypes and phenotypes. Plant Molecular Biology, 48(1–2), 155–171.

    Article  CAS  PubMed  Google Scholar 

  • Huang, G., Liu, X., Jiao, L., Xu, C., Zhang, Z., Wang, L., et al. (2014). Metabolomic evaluation of the response to endocrine therapy in patients with prostate cancer. European Journal of Pharmacology, 729, 132–137.

    Article  CAS  PubMed  Google Scholar 

  • Hutschenreuther, A., Kiontke, A., Birkenmeier, G., & Birkemeyer, C. (2012). Comparison of extraction conditions and normalization approaches for cellular metabolomics of adherent growing cells with GCMS. Anal Methods, 4, 1953–1963.

    Article  CAS  Google Scholar 

  • Kronthaler, J., Gstraunthaler, G., & Heel, C. (2012). Optimizing high-throughput metabolomic biomarker screening: A study of quenching solutions to freeze intracellular metabolism in CHO cells. OMICS: A Journal of Integrative Biology, 16(3), 90–97.

    Article  CAS  PubMed  Google Scholar 

  • Lane, A. N., & Fan, T. W. M. (2007). Quantification and identification of isotopomer distributions of metabolites in crude cell extracts using H-1 TOCSY. Metabolomics, 3(2), 79–86. doi:10.1007/s11306-006-0047-x.

    Article  CAS  Google Scholar 

  • Lorenz, M. A., Burant, C. F., & Kennedy, R. T. (2011). Reducing time and increasing sensitivity in sample preparation for adherent mammalian cell metabolomics. Analytical Chemistry, 83(9), 3406–3414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martano, G., Delmotte, N., Kiefer, P., Christen, P., Kentner, D., Bumann, D., et al. (2015). Fast sampling method for mammalian cell metabolic analyses using liquid chromatography–mass spectrometry. Nature Protocols, 10(1), 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Martineau, E., Tea, I., Loaëc, G., Giraudeau, P., & Akoka, S. (2011). Strategy for choosing extraction procedures for NMR-based metabolomic analysis of mammalian cells. Analytical and Bioanalytical Chemistry, 401(7), 2133–2142.

    Article  CAS  PubMed  Google Scholar 

  • McDunn, J. E., Li, Z., Adam, K. P., Neri, B. P., Wolfert, R. L., Milburn, M. V., et al. (2013). Metabolomic signatures of aggressive prostate cancer. The Prostate, 73(14), 1547–1560.

    Article  CAS  PubMed  Google Scholar 

  • Metallo, C. M., Walther, J. L., & Stephanopoulos, G. (2009). Evaluation of 13 C isotopic tracers for metabolic flux analysis in mammalian cells. Journal of Biotechnology, 144(3), 167–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monton, M. R. N., & Soga, T. (2007). Metabolome analysis by capillary electrophoresis–mass spectrometry. Journal of Chromatography A, 1168(1), 237–246.

    Article  CAS  PubMed  Google Scholar 

  • Schug, Z. T., Peck, B., Jones, D. T., Zhang, Q., Grosskurth, S., Alam, I. S., et al. (2015). Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell, 27(1), 57–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sellick, C. A., Hansen, R., Stephens, G. M., Goodacre, R., & Dickson, A. J. (2011). Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nature Protocols, 6(8), 1241–1249.

    Article  CAS  PubMed  Google Scholar 

  • Sheikh, K. D., Khanna, S., Byers, S. W., Fornace, A. J, Jr, & Cheema, A. K. (2011). Small molecule metabolite extraction strategy for improving LC/MS detection of cancer cell metabolome. Journal of Biomolecular Techniques, 22(1), 1.

    PubMed  PubMed Central  Google Scholar 

  • Stebbing, J., & Ellis, P. (2012). An overview of drug development for metastatic breast cancer. British Journal of Nursing, 21(Sup4), S18–S22.

    Article  PubMed  Google Scholar 

  • Sumner, L. W., Mendes, P., & Dixon, R. A. (2003). Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry, 62(6), 817–836.

    Article  CAS  PubMed  Google Scholar 

  • Teng, Q., Huang, W., Collette, T. W., Ekman, D. R., & Tan, C. (2009). A direct cell quenching method for cell-culture based metabolomics. Metabolomics, 5(2), 199–208.

    Article  CAS  Google Scholar 

  • Tiziani, S., Einwas, A.-H., Lodi, A., Ludwig, C., Bunce, C. M., Viant, M. R., et al. (2008). Optimized metabolite extraction from blood serum for H-1 nuclear magnetic resonance spectroscopy. Analytical Biochemistry, 377(1), 16–23. doi:10.1016/j.ab.2008.01.037.

    Article  CAS  PubMed  Google Scholar 

  • Volmer, M., Gettmann, J., Scholz, S., Büntemeyer, H., & Noll, T. (2011). A method for metabolomic sampling of suspended animal cells using fast filtration. In BMC proceedings (Vol. 5, p. P93). London: BioMed Central Ltd.

  • Wiendahl, C., Brandner, J., Küppers, C., Luo, B., Schygulla, U., Noll, T., et al. (2007). A microstructure heat exchanger for quenching the metabolism of mammalian cells. Chemical Engineering and Technology, 30(3), 322–328.

    Article  CAS  Google Scholar 

  • Winder, C. L., Dunn, W. B., Schuler, S., Broadhurst, D., Jarvis, R., Stephens, G. M., et al. (2008). Global metabolic profiling of Escherichia coli cultures: An evaluation of methods for quenching and extraction of intracellular metabolites. Analytical Chemistry, 80(8), 2939–2948. doi:10.1021/ac7023409.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, W., Anderson, K. W., Li, S., & Edwards, J. L. (2012). Subsecond absolute quantitation of amine metabolites using isobaric tags for discovery of pathway activation in mammalian cells. Analytical Chemistry, 84(6), 2892–2899.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding support from Chemical Engineering at the Life Science Interface (ChELSI) (EPSRC EP/E036252/1) for part funding of a PhD studentship to RK and the BBSRC DTA (BB/F016840/1) studentship funding to RC are gratefully acknowledged.

Author Contributions

Rahul Vijay Kapoore, Nicola J. Brown and Seetharaman Vaidyanathan conceived and designed the biological study. Rahul Vijay Kapoore and Seetharaman Vaidyanathan designed the metabolomics investigations. Rahul Vijay Kapoore and Rachael Coyle carried out the lab work. Rahul Vijay Kapoore analysed the metabolomics data. Rahul Vijay Kapoore wrote the manuscript with correction and input by all authors. Rachael Coyle contributed to biological experimentation. Seetharaman Vaidyanathan contributed to the statistical assessment of the data. All authors have given approval to the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seetharaman Vaidyanathan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 481 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoore, R.V., Coyle, R., Staton, C.A. et al. Cell line dependence of metabolite leakage in metabolome analyses of adherent normal and cancer cell lines. Metabolomics 11, 1743–1755 (2015). https://doi.org/10.1007/s11306-015-0833-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-015-0833-4

Keywords

Navigation