Skip to main content
Log in

Metabolic profiling by ion mobility mass spectrometry (IMMS)

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Ion Mobility Mass Spectrometry (IMMS) was evaluated as an analytical method for metabolic profiling. The specific instrument used in these studies was a direct infusion (DI)-electrospray ionization (ESI)—ambient pressure ion mobility spectrometer (APIMS) coupled to a time-of-flight mass spectrometer (TOFMS). The addition of an ion mobility spectrometer to a mass spectrometer had several advantages over direct infusion electrospray mass spectrometry alone. This tandem instrument (ESI-IMMS) added a rapid separation step with high-resolution prior to mass spectrometric analysis of metabolite mixtures without extending sample preparation time or reducing the high through put potential of direct mass spectrometry. Further, IMMS also reduced the baseline noise common with ESI-MS analyses of complex samples and enabled rapid separation of isobaric metabolites. IMMS was used to analyze the metabolome of Escherichia coli (E. coli), containing a collection of extremely diverse chemical compounds including hydrophobic lipids, inorganic ions, volatile alcohols and ketones, amino and non-amino organic acids, and hydrophilic carbohydrates. IMMS data were collected as two-dimensional spectra showing both mobility and mass of each ion detected. Using direct infusion ESI-IMMS of a non-derivatized methanol extract of an E. coli culture, more than 500 features were detected, of which over 200 intracellular metabolites were tentatively assigned as E. coli metabolites. This analytical method also allowed simultaneous separation of isomeric metabolic features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aharoni, A., Ric de Vos, C. H., Verhoeven Harrie, A., Maliepaard Chris, A., Kruppa, G., Bino, R., & Goodenowe Dayan, B. (2002). Nontargeted metabolome analysis by use of Fourier Transform Ion Cyclotron Mass Spectrometry. Omics : A Journal of Integrative Biology, 6, 217–234.

    Article  CAS  Google Scholar 

  • Asbury, G. R., & Hill, H. H. (2000a). Evaluation of ultrahigh resolution ion mobility spectrometry as an analytical separation device in chromatographic terms. Journal of Microcolumn Separations, 12, 172–178.

    Article  CAS  Google Scholar 

  • Asbury, G. R., & Hill, H. H. (2000b). Using different drift cases to change separation factors (alpha) in ion mobility spectrometry. Analytical Chemistry, 72, 580–584.

    Article  PubMed  CAS  Google Scholar 

  • Beegle, L. W., Kanik, I., Matz, L., & Hill, H. H. (2002). Effects of drift-gas polarizability on glycine peptides in ion mobility spectrometry. International Journal of Mass Spectrometry, 216, 257–268.

    Article  CAS  Google Scholar 

  • Belov, M. E., Buschbach, M. A., Prior, D. C., Tang, K., & Smith, R. D. (2007). Multiplexed ion mobility spectrometry-orthogonal time-of-flight mass spectrometry. Analytical Chemistry, 79, 2451–2462.

    Article  PubMed  CAS  Google Scholar 

  • Bradbury, N. E., & Nielsen, R. A. (1936). Absolute values of the electron mobility in hydrogen. Physical Review, 49, 388.

    Article  CAS  Google Scholar 

  • Brown Stephen, C., Kruppa, G., & Dasseux, J.-L. (2005). Metabolomics applications of FT-ICR mass spectrometry. Mass Spectrometry Reviews, 24, 223–231.

    Article  PubMed  CAS  Google Scholar 

  • Buchholz, A., Hurlebaus, J., Wandrey, C., & Takors, R. (2002). Metabolomics: Quantification of intracellular metabolite dynamics. Biomolecular Engineering, 19, 5–15.

    Article  PubMed  CAS  Google Scholar 

  • Duarte, N. C., Becker, S. A., Jamshidi, N., Thiele, I., Mo, M. L., Vo, T. D., Srivas, R., & Palsson, B. O. (2007). Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proceedings of the National Academy of Sciences of the United States of America, 104, 1777–1782.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, W. B., Bailey, N. J. C., & Johnson, H. E. (2005). Measuring the metabolome: Current analytical technologies. Analyst, 130, 606–625.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, W. B., & Ellis, D. I. (2005). Metabolomics: Current analytical platforms and methodologies. Trac-Trends in Analytical Chemistry, 24, 285–294.

    Article  CAS  Google Scholar 

  • Dwivedi, P., Bendiak, B. A., Clowers, B. H., & Hill, H. H. (2007). Rapid resolution of carbohydrate isomers by electrospray ionization ambient pressure ion mobility spectrometry-time-of-flight mass spectrometry (ESI-APIMS-TOFMS). Journal of the American Society for Mass Spectrometry, 18(7), 1163–1175.

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi, P., Wu, C., Matz, L. M., Clowers, B. H., Siems, W. F., & Hill, H. H. (2006). Gas-phase chiral separations by ion mobility spectrometry. Analytical Chemistry, 78, 8200–8206.

    Article  PubMed  CAS  Google Scholar 

  • Fiehn, O. (2002). Metabolomics – the link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171.

    Article  PubMed  CAS  Google Scholar 

  • Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161.

    Article  PubMed  CAS  Google Scholar 

  • Goodacre, R., Vaidyanathan, S., Bianchi, G., & Kell, D. B. (2002). Metabolic profiling using direct infusion electrospray ionisation mass spectrometry for the characterisation of olive oils. Analyst, 127, 1457–1462.

    Article  PubMed  CAS  Google Scholar 

  • Harrigan, G. G., LaPlante, R. H., Cosma, G. N., Cockerell, G., Goodacre, R., Maddox, J. F., Luyendyk, J. P., Ganey, P. E., & Roth, R. A. (2004). Application of high-throughput Fourier-transform infrared spectroscopy in toxicology studies: Contribution to a study on the development of an animal model for idiosyncratic toxicity. Toxicology Letters, 146, 197–205.

    Article  PubMed  CAS  Google Scholar 

  • Hollywood, K., Brison, D. R., & Goodacre, R. (2006). Metabolomics: Current technologies and future trends. Proteomics, 6, 4716–4723.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, H. E., Broadhurst, D., Kell, D. B., Theodorou, M. K., Merry, R. J., & Griffith, G. W. (2004). High-throughput metabolic fingerprinting of legume silage fermentations via Fourier transform infrared spectroscopy and chemometrics. Applied and Environmental Microbiology, 70, 1583–1592.

    Article  PubMed  CAS  Google Scholar 

  • Kast, J., Gentzel, M., Wilm, M., & Richardson, K. (2003). Noise filtering techniques for electrospray quadrupole time of flight mass spectra. Journal of the American Society for Mass Spectrometry, 14, 766–776.

    Article  PubMed  CAS  Google Scholar 

  • Kell, D. B. (2004). Metabolomics and systems biology: Making sense of the soup. Current Opinion in Microbiology, 7, 296–307.

    Article  PubMed  CAS  Google Scholar 

  • Keseler, I. M., Collado-Vides, J., Gama-Castro, S., Ingraham, J., Paley, S., Paulsen, I. T., Peralta-Gil, M., & Karp, P. D. (2005). EcoCyc: A comprehensive database resource for Escherichia coli. Nucleic Acids Research, 33, D334–337.

    Article  PubMed  CAS  Google Scholar 

  • Koek, M. M., Muilwijk, B., van der Werf, M. J., & Hankemeier, T. (2006). Microbial metabolomics with gas chromatography/mass spectrometry. Analytical Chemistry, 78, 1272–1281.

    Article  PubMed  CAS  Google Scholar 

  • Louie, T. M., Webster, C. M., & Xun, L. Y. (2002). Genetic and biochemical characterization of a 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. Journal of Bacteriology, 184, 3492–3500.

    Article  PubMed  CAS  Google Scholar 

  • Merenbloom, S. I., Koeniger, S. L., Valentine, S. J., Plasencia, M. D., & Clemmer, D. E. (2006). IMS-IMS and IMS-IMS-IMS/MS for separating peptide and protein fragment ions. Analytical Chemistry, 78, 2802–2809.

    Article  PubMed  CAS  Google Scholar 

  • Nordstrom, A., O’Maille, G., Qin, C., & Siuzdak, G. (2006). Nonlinear data alignment for UPLC-MS and HPLC-MS based metabolomics: Quantitative analysis of endogenous and exogenous metabolites in human serum. Analytical Chemistry, 78, 3289–3295.

    Article  PubMed  Google Scholar 

  • Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant Journal, 23, 131–142.

    Article  PubMed  CAS  Google Scholar 

  • Soga, T., Ohashi, Y., Ueno, Y., Naraoka, H., Tomita, M., & Nishioka, T. (2003). Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. Journal of Proteome Research, 2, 488–494.

    Article  PubMed  CAS  Google Scholar 

  • Steiner, W. E., Clowers, B. H., Fuhrer, K., Gonin, M., Matz, L. M., Siems, W. F., Schultz, A. J., & Hill, H. H. (2001). Electrospray ionization with ambient pressure ion mobility separation and mass analysis by orthogonal time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 15, 2221–2226.

    Article  PubMed  CAS  Google Scholar 

  • Steiner, W. E., Clowers, B. H., & Hill, H. H. (2003). Rapid separation of phenylthiohydantoin amino acids: Ambient pressure ion-mobility mass spectrometry (IMMS). Analytical and Bioanalytical Chemistry, 375, 99–102.

    PubMed  CAS  Google Scholar 

  • Steiner, W. E., English, W. A., & Hill, H. H. (2005). Separation efficiency of a chemical warfare agent simulant in an atmospheric pressure ion mobility time-of-flight mass spectrometer (IM(tof)MS). Analytica Chimica Acta, 532, 37–45.

    Article  CAS  Google Scholar 

  • Vaidyanathan, S., Kell, D. B., & Goodacre, R. (2002). Flow-injection electrospray ionization mass spectrometry of crude cell extracts for high-throughput bacterial identification. Journal of the American Society for Mass Spectrometry, 13, 118–128.

    Article  PubMed  CAS  Google Scholar 

  • Vaidyanathan, S., Rowland, J. J., Kell, D. B., & Goodacre, R. (2001). Discrimination of aerobic endospore-forming bacteria via electrospray-ionization mass spectrometry of whole cell suspensions. Analytical Chemistry, 73, 4134–4144.

    Article  PubMed  CAS  Google Scholar 

  • Voyksner, R. D., & Lee, H. (1999). Investigating the use of an octupole ion guide for ion storage and high-pass mass filtering to improve the quantitative performance of electrospray ion trap mass spectrometry. Rapid Communications in Mass Spectrometry, 13, 1427–1437.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, I. D., Plumb, R., Granger, J., Major, H., Williams, R., & Lenz, E. A. (2005). HPLC-MS-based methods for the study of metabonomics. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 817, 67–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported in part by a research grant from Department of Health and Human Service: Public Health Services organization (Road Map Grant No. R21 DK070274). We also wish to express our appreciation to Dr. Al Schultz, Agnes Tempez, and Thomas F. Egan at IonWerks in Houston, TX for their help and discussions throughout this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert H. Hill Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dwivedi, P., Wu, P., Klopsch, S.J. et al. Metabolic profiling by ion mobility mass spectrometry (IMMS). Metabolomics 4, 63–80 (2008). https://doi.org/10.1007/s11306-007-0093-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-007-0093-z

Keywords

Navigation