Skip to main content
Log in

Metabolomic identification of molecular changes associated with stress resilience in the chronic mild stress rat model of depression

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Chronic stressful events are key risk factors for major depressive disorder (MDD), yet some individuals exposed to stressful events do not develop MDD. This disparity suggests the significance of resilience to deleterious stress effects. However, the underlying molecular mechanisms of stress resilience are poorly understood. In the present study, the chronic mild stress (CMS) rat model of depression was used to reveal the individual differences in stress response. Employing a gas chromatography/mass spectrometry metabolomic approach, the molecular changes associated with stress resilience in rat cerebellum were characterized by comparing anhedonic, CMS resilient and control groups. The results showed that four cerebellar metabolites—proline, lysine, glutamine, and dihydroxyacetone phosphate—were identified as the key differential metabolites associated with stress resilience. These metabolites may play a potential role in rendering individuals less vulnerable to CMS exposure. These findings provide insight into the molecular mechanisms underlying stress resilience and shed light on novel therapeutic opportunities to augment stress resiliency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bernard, R., Kerman, I. A., Thompson, R. C., et al. (2011). Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Molecular Psychiatry, 16(6), 634–646.

    Article  PubMed  CAS  Google Scholar 

  • Beyer, J. L., & Krishnan, K. R. (2002). Volumetric brain imaging findings in mood disorders. Bipolar Disorders, 4(2), 89–104.

    Article  PubMed  Google Scholar 

  • Bisgaard, C. F., Jayatissa, M. N., Enghild, J. J., Sanchez, C., Artemychyn, R., & Wiborg, O. (2007). Proteomic investigation of the ventral rat hippocampus links DRP-2 to escitalopram treatment resistance and SNAP to stress resilience in the chronic mild stress model of depression. Journal of Molecular Neuroscience, 32(2), 132–144.

    Article  PubMed  CAS  Google Scholar 

  • Choudary, P. V., Molnar, M., Evans, S. J., et al. (2005). Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15653–15658.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, T., Bisgaard, C. F., & Wiborg, O. (2011). Biomarkers of anhedonic-like behavior, antidepressant drug refraction, and stress resilience in a rat model of depression. Neuroscience, 196, 66–79.

    Article  PubMed  CAS  Google Scholar 

  • Fatemi, S. H., Laurence, J. A., Araghi-Niknam, M., et al. (2004). Glial fibrillary acidic protein is reduced in cerebellum of subjects with major depression, but not schizophrenia. Schizophrenia Research, 69(2–3), 317–323.

    Article  PubMed  Google Scholar 

  • Feder, A., Nestler, E. J., & Charney, D. S. (2009). Psychobiology and molecular genetics of resilience. Nature Reviews Neuroscience, 10(6), 446–457.

    Article  PubMed  CAS  Google Scholar 

  • Gersner, R., Toth, E., Isserles, M., & Zangen, A. (2010). Site-specific antidepressant effects of repeated subconvulsive electrical stimulation: Potential role of brain-derived neurotrophic factor. Biological Psychiatry, 67(2), 125–132.

    Article  PubMed  CAS  Google Scholar 

  • Greer, T. L., Trivedi, M. H., & Thompson, L. T. (2005). Impaired delay and trace eyeblink conditioning performance in major depressive disorder. Journal of Affective Disorders, 86(2–3), 235–245.

    Article  PubMed  Google Scholar 

  • Hamasu, K., Haraguchi, T., Kabuki, Y., et al. (2009). l-proline is a sedative regulator of acute stress in the brain of neonatal chicks. Amino Acids, 37(2), 377–382.

    Article  PubMed  CAS  Google Scholar 

  • Hamasu, K., Shigemi, K., Tsuneyoshi, Y., et al. (2010). Intracerebroventricular injection of l-proline and d-proline induces sedative and hypnotic effects by different mechanisms under an acute stressful condition in chicks. Amino Acids, 38(1), 57–64.

    Article  PubMed  CAS  Google Scholar 

  • Henningsen, K., Palmfeldt, J., Christiansen, S., et al. (2012). Hippocampal biomarkers of susceptibility and resilience to stress in a rat model of depression. Molecular & Cellular Proteomics. doi:10.1074/mcp.M111.016428mcp.M111.016428.

    Google Scholar 

  • Hoppenbrouwers, S. S., Schutter, D. J., Fitzgerald, P. B., Chen, R., & Daskalakis, Z. J. (2008). The role of the cerebellum in the pathophysiology and treatment of neuropsychiatric disorders: A review. Brain Research Reviews, 59(1), 185–200.

    Article  PubMed  CAS  Google Scholar 

  • Ito, M. (2006). Cerebellar circuitry as a neuronal machine. Progress in Neurobiology, 78(3–5), 272–303.

    Article  PubMed  Google Scholar 

  • Kendler, K. S., Karkowski, L. M., & Prescott, C. A. (1999). Causal relationship between stressful life events and the onset of major depression. The American Journal of Psychiatry, 156(6), 837–841.

    PubMed  CAS  Google Scholar 

  • Kessler, R. C. (1997). The effects of stressful life events on depression. Annual Review of Psychology, 48, 191–214.

    Article  PubMed  CAS  Google Scholar 

  • Kessler, R. C., Berglund, P., Demler, O., et al. (2003). The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCS-R). The Journal of the American Medical Association, 289(23), 3095–3105.

    Article  Google Scholar 

  • Kimbrell, T. A., Ketter, T. A., George, M. S., et al. (2002). Regional cerebral glucose utilization in patients with a range of severities of unipolar depression. Biological Psychiatry, 51(3), 237–252.

    Article  PubMed  CAS  Google Scholar 

  • Konarski, J. Z., McIntyre, R. S., Grupp, L. A., & Kennedy, S. H. (2005). Is the cerebellum relevant in the circuitry of neuropsychiatric disorders? Journal of Psychiatry and Neuroscience, 30(3), 178–186.

    PubMed  Google Scholar 

  • Lawson, A., Ahima, R. S., Krozowski, Z., & Harlan, R. E. (1992). Postnatal development of corticosteroid receptor immunoreactivity in the rat cerebellum and brain stem. Neuroendocrinology, 55(6), 695–707.

    Article  PubMed  CAS  Google Scholar 

  • Li, Z. Y., Zheng, X. Y., Gao, X. X., et al. (2010). Study of plasma metabolic profiling and biomarkers of chronic unpredictable mild stress rats based on gas chromatography/mass spectrometry. Rapid Communications in Mass Spectrometry, 24(24), 3539–3546.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Z., Xu, C., Xu, Y., et al. (2010). Decreased regional homogeneity in insula and cerebellum: A resting-state fMRI study in patients with major depression and subjects at high risk for major depression. Psychiatry Research, 182(3), 211–215.

    Article  PubMed  Google Scholar 

  • Liu, L., Zeng, L. L., Li, Y., et al. (2012). Altered cerebellar functional connectivity with intrinsic connectivity networks in adults with major depressive disorder. PLoS One, 7(6), e39516. doi:10.1371/journal.pone.0039516.

    Article  PubMed  CAS  Google Scholar 

  • Lucca, G., Comim, C. M., Valvassori, S. S., et al. (2009). Increased oxidative stress in submitochondrial particles into the brain of rats submitted to the chronic mild stress paradigm. Journal of Psychiatric Research, 43(9), 864–869.

    Article  PubMed  Google Scholar 

  • Luedemann, A., Strassburg, K., Erban, A., & Kopka, J. (2008). TagFinder for the quantitative analysis of gas chromatography–mass spectrometry (GC–MS)-based metabolite profiling experiments. Bioinformatics, 24(5), 732–737.

    Article  PubMed  CAS  Google Scholar 

  • Madtes, P, Jr, & King, J. S. (1999). The temporal and spatial development of CRF binding sites in the postnatal mouse cerebellum. Neuroscience Research, 34(1), 45–50.

    Article  PubMed  CAS  Google Scholar 

  • Mazzocchi, G., Andreis, P. G., De Caro, R., Aragona, F., Gottardo, L., & Nussdorfer, G. G. (1999). Cerebellin enhances in vitro secretory activity of human adrenal gland. The Journal of Cinical Endocrinology and Metabolism, 84(2), 632–635.

    Article  PubMed  CAS  Google Scholar 

  • Miguel-Hidalgo, J. J., Waltzer, R., Whittom, A. A., Austin, M. C., Rajkowska, G., & Stockmeier, C. A. (2010). Glial and glutamatergic markers in depression, alcoholism, and their comorbidity. Journal of Affective Disorders, 127(1–3), 230–240.

    Article  PubMed  CAS  Google Scholar 

  • Nagasawa, M., Ogino, Y., Kurata, K., et al. (2012). Hypothesis with abnormal amino acid metabolism in depression and stress vulnerability in Wistar Kyoto rats. Amino Acids. doi:10.1007/s00726-012-1294-y.

    Google Scholar 

  • Ni, Y., Su, M., Lin, J., et al. (2008). Metabolic profiling reveals disorder of amino acid metabolism in four brain regions from a rat model of chronic unpredictable mild stress. FEBS Letters, 582(17), 2627–2636.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, J. K., & Wilson, I. D. (2003). Opinion: Understanding ‘global’ systems biology: Metabonomics and the continuum of metabolism. Nature Reviews Drug Discovery, 2(8), 668–676.

    Article  PubMed  CAS  Google Scholar 

  • Nofzinger, E. A., Buysse, D. J., Germain, A., et al. (2005). Alterations in regional cerebral glucose metabolism across waking and non-rapid eye movement sleep in depression. Archives of General Psychiatry, 62(4), 387–396.

    Article  PubMed  CAS  Google Scholar 

  • Paige, L. A., Mitchell, M. W., Krishnan, K. R., Kaddurah-Daouk, R., & Steffens, D. C. (2007). A preliminary metabolomic analysis of older adults with and without depression. International Journal of Geriatric Psychiatry, 22(5), 418–423.

    Article  PubMed  Google Scholar 

  • Pariante, C. M., & Lightman, S. L. (2008). The HPA axis in major depression: Classical theories and new developments. Trends in Neurosciences, 31(9), 464–468.

    Article  PubMed  CAS  Google Scholar 

  • Pavlik, A., & Buresova, M. (1984). The neonatal cerebellum: The highest level of glucocorticoid receptors in the brain. Brain Research, 314(1), 13–20.

    PubMed  CAS  Google Scholar 

  • Porsolt, R. D., Le Pichon, M., & Jalfre, M. (1977). Depression: A new animal model sensitive to antidepressant treatments. Nature, 266(5604), 730–732.

    Article  PubMed  CAS  Google Scholar 

  • Rothman, D. L., Behar, K. L., Hyder, F., & Shulman, R. G. (2003). In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: Implications for brain function. Annual Review of Physiology, 65, 401–427.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez, M. M., Young, L. J., Plotsky, P. M., & Insel, T. R. (2000). Distribution of corticosteroid receptors in the rhesus brain: Relative absence of glucocorticoid receptors in the hippocampal formation. The Journal of Neuroscience, 20(12), 4657–4668.

    PubMed  CAS  Google Scholar 

  • Shah, S. A., Doraiswamy, P. M., Husain, M. M., et al. (1992). Posterior fossa abnormalities in major depression: A controlled magnetic resonance imaging study. Acta Psychiatrica Scandinavica, 85(6), 474–479.

    Article  PubMed  CAS  Google Scholar 

  • Smriga, M., Kameishi, M., Uneyama, H., & Torii, K. (2002). Dietary l-lysine deficiency increases stress-induced anxiety and fecal excretion in rats. The Journal of Nutrition, 132(12), 3744–3746.

    PubMed  CAS  Google Scholar 

  • Smriga, M., Ghosh, S., Mouneimne, Y., Pellett, P. L., & Scrimshaw, N. S. (2004). Lysine fortification reduces anxiety and lessens stress in family members in economically weak communities in Northwest Syria. Proceedings of the National Academy of Sciences of the United States of America, 101(22), 8285–8288.

    Article  PubMed  CAS  Google Scholar 

  • Southwick, S. M., Vythilingam, M., & Charney, D. S. (2005). The psychobiology of depression and resilience to stress: Implications for prevention and treatment. Annual Review of Clinical Psychology, 1, 255–291.

    Article  PubMed  Google Scholar 

  • Strekalova, T., Spanagel, R., Bartsch, D., Henn, F. A., & Gass, P. (2004). Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology, 29(11), 2007–2017.

    Article  PubMed  Google Scholar 

  • Su, Z. H., Li, S. Q., Zou, G. A., et al. (2011). Urinary metabonomics study of anti-depressive effect of Chaihu-Shu-Gan-San on an experimental model of depression induced by chronic variable stress in rats. Journal of Pharmaceutical and Biomedical Analysis, 55(3), 533–539.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney, J. A., Strojwas, M. H., Mann, J. J., & Thase, M. E. (1998). Prefrontal and cerebellar abnormalities in major depression: Evidence from oculomotor studies. Biological Psychiatry, 43(8), 584–594.

    Article  PubMed  CAS  Google Scholar 

  • Takagi, T., Ando, R., Ohgushi, A., et al. (2001). Intracerebroventricular injection of pipecolic acid inhibits food intake and induces sleeping-like behaviors in the neonatal chick. Neuroscience Letters, 310(2–3), 97–100.

    Article  PubMed  CAS  Google Scholar 

  • Taliaz, D., Loya, A., Gersner, R., Haramati, S., Chen, A., & Zangen, A. (2011). Resilience to chronic stress is mediated by hippocampal brain-derived neurotrophic factor. The Journal of Neuroscience, 31(12), 4475–4483.

    Article  PubMed  CAS  Google Scholar 

  • Teague, C. R., Dhabhar, F. S., Barton, R. H., et al. (2007). Metabonomic studies on the physiological effects of acute and chronic psychological stress in Sprague–Dawley rats. Journal of Proteome Research, 6(6), 2080–2093.

    Article  PubMed  CAS  Google Scholar 

  • Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 16(3), 119–128.

    Article  CAS  Google Scholar 

  • Walter, M., Henning, A., Grimm, S., et al. (2009). The relationship between aberrant neuronal activation in the pregenual anteriorcingulate, altered glutamatergic metabolism, and anhedonia in major depression. Archives of General Psychiatry, 66(5), 478–486.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Zhao, T., Qiu, Y., et al. (2009). Metabonomics approach to understanding acute and chronic stress in rat models. Journal of Proteome Research, 8(5), 2511–2518.

    Article  PubMed  CAS  Google Scholar 

  • Willner, P. (2005). Chronic mild stress (CMS) revisited: Consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology, 52(2), 90–110.

    Article  PubMed  CAS  Google Scholar 

  • Willner, P., Towell, A., Sampson, D., Sophokleous, S., & Muscat, R. (1987). Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl), 93(3), 358–364.

    Article  CAS  Google Scholar 

  • Zhang, F., Jia, Z., Gao, P., et al. (2010). Metabonomics study of urine and plasma in depression and excess fatigue rats by ultra fast liquid chromatography coupled with ion trap-time of flight mass spectrometry. Molecular BioSystems, 6(5), 852–861.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, P., Gao, H. C., Li, Q., et al. (2012). Plasma metabonomics as a novel diagnostic approach for major depressive disorder. Journal of Proteome Research, 11(3), 1741–1748.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, S., Yu, M., Lu, X., et al. (2010). Urinary metabonomic study on biochemical changes in chronic unpredictable mild stress model of depression. Clinica Chimica Acta, 411(3–4), 204–209.

    Article  CAS  Google Scholar 

  • Zheng, S., Zhang, S., Yu, M., et al. (2011). An 1H NMR and UPLC-MS-based plasma metabonomic study to investigate the biochemical changes in chronic unpredictable mild stress model of depression. Metabolomics, 7, 413–423.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (973 Program, Grant No. 2009CB918300). This manuscript was edited and proofread by Dr. N. D. Melgiri.

Conflict of interest

The authors have declared no conflict of interest in the submission of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Xie.

Additional information

Wei-Hua Shao, Song-Hua Fan, Yang Lei, and Guo-En Yao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, WH., Fan, SH., Lei, Y. et al. Metabolomic identification of molecular changes associated with stress resilience in the chronic mild stress rat model of depression. Metabolomics 9, 433–443 (2013). https://doi.org/10.1007/s11306-012-0460-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-012-0460-2

Keywords

Navigation