Skip to main content
Log in

Proteomic Investigation of the Ventral Rat Hippocampus Links DRP-2 to Escitalopram Treatment Resistance and SNAP to Stress Resilience in the Chronic Mild Stress Model of Depression

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The development of depression as well as recovery from depression is most likely accompanied by a change in protein expression profiles. The purpose of the present study was to quantitatively investigate global protein expression differences independent of any hypothesis describing depression etiology and recovery. Thus two-dimensional differential in-gel electrophoresis was employed to compare the ventral hippocampal proteomes between different treatment groups in the chronic mild stress (CMS) model of depression. The CMS paradigm induces anhedonic behaviour, which is a major symptom of depression, by exposing rats to a series of mild stressors for 7 weeks, with antidepressant treatment during the last 4 weeks. In the CMS model, animals were split into six different groups at the end of treatment; unchallenged control escitalopram (n =  12), unchallenged control vehicle (n = 12), CMS vehicle (n = 12), CMS escitalopram responders (n  =  11), CMS escitalopram non-responders (n  =  13) and CMS resilient (stress resistant) (n  =  12). Protein levels in the ventral rat hippocampus were compared between the groups to provide putative markers of anhedonia, escitalopram resistance, and stress resilience. Twenty-eight candidate protein spots were selected, of which 13 were successfully identified using tandem mass spectrometry. DRP-2 (dihydropyrimidinase-related protein-2) was a potential marker for escitalopram resistance, whereas α-SNAP and β-SNAP were associated with stress resilience. Furthermore, several molecular chaperones and cytoskeleton organisers were identified as being differentially expressed. Our data indicate that neuronal adaptation is an essential element of depression etiology and recovery, suggesting the involvement of cellular plasticity in the underlying molecular mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alban, A., David, S. O., Bjorkesten, L., Andersson, C., Sloge, E., Lewis, S. et al. (2003). A novel experimental design for comparative two-dimensional gel analysis: Two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics, 3, 36–44.

    Article  PubMed  CAS  Google Scholar 

  • Alfonso, J., Fernández, M. E., Cooper, B., Flugge, G., & Frasch, A. C. (2005). The stress-regulated protein M6a is a key modulator for neurite outgrowth and filopodium/spine formation. PNAS, 102, 17196–17201.

    Article  PubMed  CAS  Google Scholar 

  • Alfonso, J., Frick, L. R., Silberman, D. M., Palumbo, M. L., Genaro, A. M., Frasch, A. C. (2006). Regulation of hippocampal gene expression is conserved in two species subjected to different stressors and antidepressant treatment. Biological Psychiatry, 59, 244–251.

    Article  PubMed  CAS  Google Scholar 

  • Babcock, M., Macleod, G. T., Leither, J., & Pallanck, L. (2004). Genetic analysis of soluble N-ethylmaleimide-sensitive factor attachment protein function in Drosophila reveals positive and negative secretory roles. Journal of Neuroscience, 24, 3964–3973.

    Article  PubMed  CAS  Google Scholar 

  • Bannerman, D. M., Rawlins, J. N. P., Mchugh, S. B., Deacon, R. M. J., Yee, B. K., & Bast, T. (2004). Regional dissociations within the hippocampusFmemory and anxiety. Neuroscience and Biobehavioral Reviews, 28, 273–283.

    Article  PubMed  CAS  Google Scholar 

  • Bondolfi, G., Chautems, C., Rochat, B., Bertschy, G., & Baumann, P. (1996). Non response to citalopram in depressive patients: Pharmacokinetic and clinical consequences of a fluvoxamine augmentation. Psychopharmacology, 128, 421–425.

    Article  PubMed  CAS  Google Scholar 

  • Boulenger, J. P., Huusom, A. K. T., Florea, I., Bækdal, T., & Sarchiapone, M. (2006) A comparative study of the efficacy of long-term treatment with escitalopram and paroxetine in severely depressed patients. Current Medical Research and Opinion, 22, 1331–1341.

    Article  PubMed  CAS  Google Scholar 

  • Byk, T., Dobransky, T., Cifuentes-Diaz, C., & Sobel, A. (1996). Identification and molecular characterization of Unc-33-like phosphoprotein (Ulip), a putative mammalian homolog of the axonal guidance-associated unc-33 gene product. Journal of Neuroscience, 16, 688–701.

    PubMed  CAS  Google Scholar 

  • Carboni, L., Piubelli, C., Pozzato, C., Astner, H., Arban, R., Righetti, P. G. et al. (2006a). Proteomic analysis of rat hippocampus after repeated psychosocial stress. Neuroscientist, 137, 1237–1246.

    CAS  Google Scholar 

  • Carboni, L., Vighini, M., Puibelli, C., Castelletti, L., Milli, A., & Dominici, E. (2006b). Proteomic analysis of rat hippocampus and frontal cortex after chronic treatment with fluoxetine putative novel antidepressants: CRF1 and NK1 receptor antagonists. European Neuropsychopharmacology, 16, 688–701.

    Article  CAS  Google Scholar 

  • Chen, B., Wang, J.-F., Sun, X., & Young, L. T. (2003). Regulation of GAP-43 expression by chronic desipramine treatment in rat cultured hippocampal cells. Biological Psychiatry, 53, 530–537.

    Article  PubMed  CAS  Google Scholar 

  • Dow, A. L., Russell, D. S., & Duman, R. S. (2005). Regulation of Activin mRNA and Smad2 phosphorylation by antidepressant treatment in the rat brain: Effects in behavioral models. Journal of Neuroscience, 25, 4908–4916.

    Article  PubMed  CAS  Google Scholar 

  • Einarson, T. R. (2004). Evidence based review of escitalopram in treating major depressive disorder in primary care. International Clinical Psychopharmacology, 19, 305–310.

    Article  PubMed  Google Scholar 

  • Fukata, Y., Itoh, T. J., Kimura, T., Ménager, C., Nishimura, T., Shiromizu, T. et al. (2002). CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nature Cell Biology, 4, 583–591.

    PubMed  CAS  Google Scholar 

  • Gage, F. H., & Thompson, R. G. (1980). Differential distribution of norepinephrine and serotonin along the dorsal–ventral axis of the hippocampal-formation. Brain Research Bulletin, 5, 771–773.

    Article  PubMed  CAS  Google Scholar 

  • Goshima, Y., Nakamura, F., Strittmatter, P., & Strittmatter, S. M. (1995). Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature, 376, 509–514.

    Article  PubMed  CAS  Google Scholar 

  • Gu, Y., & Ihara, Y. (2000). Evidence that collapsin response mediator protein-2 is involved in the dynamics of microtubules. Journal of Biological Chemistry, 275, 17917–17920.

    Article  PubMed  CAS  Google Scholar 

  • Hamajima, N., Matsuda, K., Sakata, S., Tamaki, N., & Sasaki, M. (1996). A novel gene family defined by Dihydropyrimidinase and three related proteins with differential tissue distribution. Gene, 180, 157–163.

    Article  PubMed  CAS  Google Scholar 

  • Herman, J. P., Dolgas, C. M., & Carlson, S. L. (1998). Ventral subiculum regulates hypothalamo-pituitary-adrenocortical and behavioral responses to cognitive stressors. Neuroscientist, 86, 449–459.

    CAS  Google Scholar 

  • Hock, B. J., & Bunsey, M. D. (1998). Differential effects of dorsal and ventral hippocampal lesions. Journal of Neuroscience, 18, 7027–7032.

    PubMed  CAS  Google Scholar 

  • Inagaki, N., Chihara, K., Arimura, N., Ménager, C., Kawano, Matsuo, N. et al. (2001). CRMP-2 induces axons in cultured hippocampal neurons. Nature Neuroscience, 4, 781–782.

    Article  PubMed  CAS  Google Scholar 

  • Jayatissa, M. N., Bisgaard, C. F., Tingström, A., Papp, M., & Wiborg, O. (2006). Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacology, 31, 2395–2404.

    Article  PubMed  CAS  Google Scholar 

  • Johnston-Wilson, N. L., Sims, C. D., Hofman, J.-P., Anderson, L., Shore, A. D., Torrey, E. F. et al. (2000). Disease-specific alterations in frontal cortex brain proteins in Schizophrenia, bipolar disorder, and major depressive disorder. Molecular Psychiatry, 5, 142–149

    Article  PubMed  CAS  Google Scholar 

  • Karp, N. A., & Lilley, K. S. (2005). Maximising sensitivity for detecting changes in protein expression: Experimental design using minimal CyDyes. Proteomics, 5, 3105–3115.

    Article  PubMed  CAS  Google Scholar 

  • Khawaja, X., Xu, J., Liang, J.-J., & Barrett, J. E. (2004). Proteomic analysis of protein changes developing in rat hippocampus after chronic antidepressant treatment: Implications for depressive disorders and future therapies. Journal of Neuroscience Research, 75, 451–460.

    Article  PubMed  CAS  Google Scholar 

  • Leonardo, E. D., Richardson-Jones, J. W., Sibille, E., Kottman, A., & Hen, R. (2006). Molecular heterogeneity along the dorsal-ventral axis of the murine hippocampal Ca1 field: A microarray analysis of gene expression. Neuroscience, 137, 177–186.

    Article  PubMed  CAS  Google Scholar 

  • Lilley, K. S., & Friedman, D. B. (2004). All about DIGE: Quantitation technology for differential-display 2D-gel proteomics. Expert Review of Proteomics, 1, 401–409.

    Article  PubMed  CAS  Google Scholar 

  • Lubec, G., Nonaka, M., Krapfenbauer, K., Gratzen, M., Cairns, N., & Fountoulakis, M. (1999). Expression of dihydropyrimidinase related protein 2 (DRP-2) in Down syndrome and Alzheimer’s disease brain is downregulated at the mRNA level and dysregulated at the protein level. Journal of Neural Transmission Supplementum, 57, 161–177.

    PubMed  CAS  Google Scholar 

  • Malberg, J. E., & Blendy, J. A. (2005). Antidepressant action: To the nucleus and beyond. Trends in Pharmacological Sciences, 26, 631–638.

    Article  PubMed  CAS  Google Scholar 

  • Marouga, R., David, S., & Hawkins, E. (2005). The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem, 382, 669–678.

    Article  PubMed  CAS  Google Scholar 

  • Minturn, J. E., Fryer, H. J. L., Geschwind, D. H., & Hockfield, S. (1995). TOAD-64, a gene expressed early in neuronal differentiation in the rat, is related to unc-33, a C. elegans gene involved in axon outgrowth. Journal of Neuroscience, 15, 6757–6766.

    PubMed  CAS  Google Scholar 

  • Moore, N., Verdoux, H., & Fantino, B. (2005). Prospective, multicentre, randomized, double-blind study of the efficacy of escitalopram versus citalopram in outpatient treatment of major depressive disorder. International Clinical Psychopharmacology, 20, 131–137.

    Article  PubMed  Google Scholar 

  • Moreau, J. L., Jenck, F., Martin, J. R., Mortas, P., & Haefely, W. E. (1992). Antidepressant treatment prevents chronic unpredictable mild stress-induced anhedonia as assessed by ventral tegmental self-stimulation behaviour in rats. European Neuropsychopharmacology, 2, 43–49.

    Article  PubMed  CAS  Google Scholar 

  • Moreau, J. L., Scherschlicht, R., Jenck, F., & Martin, J. R. (1995). Chronic mild stress-induced anhedonia model of depression; sleep abnormalities and curative effects of electroshock treatment. Behavioural Pharmacology, 6, 682–687.

    Article  Google Scholar 

  • Moser, M. B., & Moser, E. I. (1998). Functional differentiation in the hippocampus. Hippocampus, 8, 608–619.

    Article  PubMed  CAS  Google Scholar 

  • Nadel, L. (1968) Dorsal and ventral hippocampal lesions and behaviour. Physiology & Behavior, 3, 891–900.

    Article  Google Scholar 

  • Newcombe, J., Eriksson, B., Ottervald, J., Yang, Y., & Franzén, B. (2005). Extraction and proteomic analysis of proteins from normal and multiple sclerosis postmortem brain. Journal of Chromatography. B, 815, 191–202.

    Article  CAS  Google Scholar 

  • Nishiki, T., Nihonmatsu, I., Tsuhara, Y., Kawasaki, M., Sekiguchi, M., Sato, K. et al. (2001). Distribution of soluble N-ethylmaleimide fusion protein attachment proteins (SNAPs) in the rat nervous system. Neuroscientist, 107, 363–371.

    CAS  Google Scholar 

  • Nishimune, A., Isaac, J. T. R., Molnar, E., Noel, J., Nash, S. R., Tagaya, M.et al. (1998). NSF binding to GluR2 regulates synaptic transmission. Neuron, 21, 87–97.

    Article  PubMed  CAS  Google Scholar 

  • Osten, P., Srivastava, S., Inman, G. J., Vilim, F. S., Khatri, L., Lee, L. M. et al. (1998). The AMPA receptor GluR2 C-terminus can mediate a reversible, ATP-dependent interaction with NSF and α-and β-SNAPs. Neuron, 21, 99–110.

    Article  PubMed  CAS  Google Scholar 

  • Papp, M., Moryl, E., & Willner, P. (1996). Pharmacological validation of the chronic mild stress model of depression. European Journal of Pharmacology, 296, 129–136.

    Article  PubMed  CAS  Google Scholar 

  • Papp, M., Willner, P., & Muscat, R. (1991). An animal model of anhedonia: Attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacology (Berlin), 104, 255–259.

    Article  CAS  Google Scholar 

  • Paxinos, G., & Watson, C. (1986). The rat brain in stereotactic coordinates. Sydney, Australia: Academic.

    Google Scholar 

  • Perkins, D. N., Pappin, D. J. C, Creasy, D. M., & Cottrell, J. S. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20, 3551–3567.

    Article  PubMed  CAS  Google Scholar 

  • Sánchez, C., Bergqvist, P. B. F, Brennum, L. T., Gupta, S., Hogg, S., Larsen, A. et al. (2003). Escitalopram, the S-(+)-enantiomer of citalopram, is a selective serotonin reuptake inhibitor with potent effects in animal models predictive of antidepressant and anxiolytics activities. Psychopharmacology, 167, 353–362.

    PubMed  Google Scholar 

  • Schildkraut, J. J. (1965). The catecholamine hypothesis of affective disorders: A review of supporting evidence. Journal of Neuropsychiatry and Clinical Neurosciences, 7, 524–533.

    Google Scholar 

  • Shevchenko, A., Wilm, M., Vorm, O., & Mann, M. (1996). Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Analytical Chemistry, 68, 850–858.

    Article  PubMed  CAS  Google Scholar 

  • Svenningsson, P., Chergui, K., Rachleff, I., Flajolet, M., Zhang, X., Yacoubi, M. E. et al. (2006). Alterations in 5-HT1B receptor function by p11 in depression-like states. Science, 311, 77–80.

    Article  PubMed  CAS  Google Scholar 

  • Tonge, R., Shaw, J., Middleton, B., Rowlinson, R., Rayner, S., Young, J. et al. (2001). Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics, 1, 377–396.

    Article  PubMed  CAS  Google Scholar 

  • Tusher, V. G., Tibshirani, R., & Chu, G. (2001). Significant analysis of microarrays applied to the ionizing radiation response. PNAS, 98, 5116–5121.

    Article  PubMed  CAS  Google Scholar 

  • Ünlu, M., Morgan, M. E., & Minden, J. S. (1997). Difference gel electrophoresis: A single gel method for detecting changes in protein extracts. Electrophoresis, 18, 2071–2077.

    Article  PubMed  Google Scholar 

  • Vaidya, V. A., & Duman, R. S. (2001). Depression: Emerging insights from neurobiology. British Medical Bulletin, 57, 61–79.

    Article  PubMed  CAS  Google Scholar 

  • Voss, T., & Haber, P. (2000). Observations on the reproducibility and matching efficiency of two-dimensional electrophoresis gels: Consequences for comprehensive data analysis. Electrophoresis, 21, 3345–3350.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L.-H., & Strittmatter, S. M. (1996). A family of rat CRMP genes is differentially expressed in the nervous system. Journal of Neuroscience, 16, 6197–6207.

    PubMed  CAS  Google Scholar 

  • Wang, L., Ungermann, C., & Wicker, W. (2000). The docking of primed vacuoles can be reversibly arrested by excess Sec17p (α-SNAP). Journal of Biological Chemistry, 275, 22862–22867.

    Article  PubMed  CAS  Google Scholar 

  • Willner, P. (1997). Validity, reliability and utility of the chronic mild stress model of depression: A 10-year review and evaluation. Psychopharmacology, 134, 319–329.

    Article  PubMed  CAS  Google Scholar 

  • Willner, P. (2005). Chronic mild stress (CMS) revisited: Consistency and behavioural–neurobiological concordance in the effects of CMS. Neuropsychobiology, 52, 90–110.

    Article  PubMed  CAS  Google Scholar 

  • Willner, P., Towell, A., Sampson, D., Sophokleous, S., & Muscat, R. (1987). Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berlin), 93, 358–364.

    Article  CAS  Google Scholar 

  • Wong, M. L., & Lucinio, J. (2004). From monoamines to genomic targets: A paradigm shift for drug discovery in depression. Nature Reviews. Drug Discovery, 3, 136–151.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Thomas Thykær Andersen for help with the hierarchical clustering analysis and Leif Schauser for help with the statistical analysis. This work was supported by the Lundbeck foundation and the Danish Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ove Wiborg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisgaard, C.F., Jayatissa, M.N., Enghild, J.J. et al. Proteomic Investigation of the Ventral Rat Hippocampus Links DRP-2 to Escitalopram Treatment Resistance and SNAP to Stress Resilience in the Chronic Mild Stress Model of Depression. J Mol Neurosci 32, 132–144 (2007). https://doi.org/10.1007/s12031-007-0025-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-0025-4

Keywords

Navigation