Skip to main content

Advertisement

Log in

Intracerebroventricular injection of L-proline and D-proline induces sedative and hypnotic effects by different mechanisms under an acute stressful condition in chicks

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The central effects of L-proline, D-proline and trans-4-hydroxy-L-proline were investigated by using the acute stressful model with neonatal chicks in Experiment 1. Sedative and hypnotic effects were induced by all compounds, while plasma corticosterone release under isolation stress was only attenuated by L-proline. To clarify the mechanism by which L-proline and D-proline induce sedative and hypnotic effects, the contribution of the strychnine-sensitive glycine receptor (glycine receptor) and N-methyl-D-aspartate glutamate receptor (NMDA receptor) were further investigated. In Experiments 2–3, the glycine receptor antagonist strychnine was co-injected intracerebroventricular (i.c.v.) with L-proline or D-proline. The suppression of isolation-induced stress behavior by D-proline was attenuated by strychnine. However, the suppression of stress behavior by L-proline was not attenuated. In Experiment 4, the NMDA receptor antagonist (+)-MK-801 was co-injected i.c.v. with L-proline. The suppression of stress behavior by L-proline was attenuated by (+)-MK-801. These results indicate that L-proline and D-proline differentially induce sedative and hypnotic effects through NMDA and glycine receptors, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abercrombie ED, Keefe KA, Difrischia DS, Zigmond MJ (1989) Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J Neurochem 52:1655–1658. doi:10.1111/j.1471-4159.1989.tb09224.x

    Article  CAS  PubMed  Google Scholar 

  • Arco AD, Mora F (2001) Dopamine release in the prefrontal cortex during stress is reduced by the local activation of glutamate receptors. Brain Res Bull 56:125–130. doi:10.1016/S0361-9230(01)00616-5

    Article  PubMed  Google Scholar 

  • Asechi M, Tomonaga S, Tachibana T, Han L, Hayamizu K, Denbow DM, Furuse M (2006) Intracerebroventricular injection of L-serine analogs and derivatives induces sedative and hypnotic effects under an acute stressful condition in neonatal chicks. Behav Brain Res 170:71–77. doi:10.1016/j.bbr.2006.02.005

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee A, Bansal M (2005) Collagen structure the Madras triple helix and the current scenario. IUBUB Life 57:161–172. doi:10.1080/15216540500090710

    Article  CAS  Google Scholar 

  • Davis JL, Masuoka DT, Gerbrandt LK, Cherkin A (1979) Autoradiographic distribution of L-proline in chicks after intracerebral injection. Physiol Behav 22:693–695. doi:10.1016/0031-9384(79)90233-6

    Article  CAS  PubMed  Google Scholar 

  • Delport M, Maas S, Van der merwe SW, Laurens JB (2004) Quantitation of hydroxyproline in bone by gas chromatography–mass spectrometry. J Chromatogr A 804:345–351

    CAS  Google Scholar 

  • Farah JM Jr, Rao TS, Mick SJ, Coyne KE, Iyengar S (1991) N-methyl-D-aspartate treatment increases circulating adrenocrticotropin and luteinizing hormone in the rat. Endocrinology 128:1875–1880

    Article  CAS  PubMed  Google Scholar 

  • Feltenstein MW, Lambdin LC, Ganzera M, Ranjith H, Dharmaratne W, Nanayakkara NP (2003a) Anxiolytic properties of Piper methysticum extract samples and fractions in the chick social-separation-stress procedure. Phytother Res 17:210–216. doi:10.1002/ptr.1107

    Article  PubMed  Google Scholar 

  • Feltenstein MW, Lambdin LC, Webb HE, Warnick JE, Khan SI, Khan IA, Acevedo ED, Sufka KJ (2003b) Corticosterone response in the chick separation-stress paradigm. Physiol Behav 78:489–493. doi:10.1016/S0031-9384(03)00030-1

    Article  CAS  PubMed  Google Scholar 

  • Fremeau RT Jr, Caron MG, Blakely RD (1992) Molecular cloning and expression of a high affinity L-proline transporter expressed in putative glutamatergic pathways of rat brain. Neuron 8:915–926. doi:10.1016/0896-6273(92)90206-S

    Article  CAS  PubMed  Google Scholar 

  • Gogos JA, Sautha M, Takacs Z, Beck KD, Luine V, Lucas LR, Nadler JV, Karayiorgou M (1999) The gene encoding proline dehydrogenase modulates sensorimotor gating in mice. Nat Genet 21:434–439. doi:10.1038/7777

    Article  CAS  PubMed  Google Scholar 

  • Gruss M, Braun K (1996) Distinct activation of monoaminergic pathways in chick brain in relation to auditory imprinting and stressful situations: a microdialysis study. Neuroscience 76:891–899. doi:10.1016/S0306-4522(96)00385-5

    Article  Google Scholar 

  • Gruss M, Bredenkotter M, Braun K (1999) N-methyl-D-aspartate receptor-mediated modulation of monoaminergic metabolites and amino acids in the chicks forebrain: an in vivo microdialysis and electrophysiology study. J Neurobiol 40:116–135. doi :10.1002/(SICI)1097-4695(199907)40:1<116::AID-NEU10>3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  • Halpain S, Wieczorek CM, Rainbow TC (1984) Localization of L-glutamate receptors in rat brain by quantitative autoradiography. J Neurosci 4:2247–2258

    CAS  PubMed  Google Scholar 

  • Hamasu K, Haraguchi T, Kabuki Y, Adachi N, Tomonaga S, Sato H, Denbow DM, Furuse M (2009) L-Proline is a sedative regulator of acute stress in the brain of neonatal chicks. Amino Acids (in press)

  • Harvey R, Depner U, Wassle H, Ahmadi S, Heindl C, Reinold H, Smart T, Harvey K, Schutz B, Akbari O, Zimmer A, Poisbeau P, Welzl H, Wolfer H, Betz H, Zeilhofer U, Muller U (2004) Gly Ralpha3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304:884–888. doi:10.1126/science.1094925

    Article  CAS  PubMed  Google Scholar 

  • Henzi V, Reichling DB, Helm SW, Macdermott AB (1992) L-Proline activates glutamate and glycine receptors in cultured rat dorsal horn neurons. Mol Pharmacol 41:793–801

    CAS  PubMed  Google Scholar 

  • Jazova D, Tokarev D, Rusnak M (1995) Endogenous excitatory amino acids are involved in stress-induced adrenocorticotropin and catecholamine release. Neuroendocrinology 62:326–332. doi:10.1159/000127021

    Article  Google Scholar 

  • Joanny P, Steinberg J, Oliver C, Grino M (1997) Glutamate and N-methyl-D-aspartate stimulate rat hypothalamic corticotropin-releasing factor secretion in vitro. J Neuroendocrinol 9:93–97. doi:10.1046/j.1365-2826.1997.00548.x

    Article  CAS  PubMed  Google Scholar 

  • Koutoku T, Takahashi H, Tomonaga S, Oikawa D, Saito S, Tachibana T, Han L, Hayamizu K, Denbow DM, Furuse M (2005) Central administration of phosphatidylserine attenuates isolation stress-induced behavior in chicks. Neurochem Int 47:183–189. doi:10.1016/j.neuint.2005.03.006

    Article  CAS  PubMed  Google Scholar 

  • Lindstrom P, Ohlsson L (1992) Effect of N-methyl-D, L-aspartate on isolated rat somatotrophs. Endocrinology 131:1903–1907. doi:10.1210/en.131.4.1903

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Corcuera B, Geerlings A, Aragon C (2001) Glycine neurotransmitter transporters: an update. Mol Membr Biol 18:13–20

    CAS  PubMed  Google Scholar 

  • Mahesh VB, Zamorano P, Sevilla LD, Lewis D, Brann DV (1999) Characterization of ionotropic glutamate receptors in rat hypothalamus, pituitary and immortalized gonadotropin-releasing hormone (GnRH) neurons (GT1–7 cells). Neuroendocrinology 69:397–407. doi:10.1159/000054442

    Article  CAS  PubMed  Google Scholar 

  • Messia MC, Falco TD, Panfili G, Marconi E (2008) Rapid determination of collagen in meat-based foods by microwave hydrolysis of proteins and HPAEC–PAD analysis of 4-hydroxyproline. Meat Sci (in press)

  • Ortiz JG, Cordero ML, Rosado A (1996) Proline-glutamate interactions in the CNS. Prog Neuro-Psychoph 21:141–152. doi:10.1016/S0278-5846(96)00164-9

    Article  Google Scholar 

  • Panksepp J, Bean NJ, Bishop P, Vilberg T, Sahley TL (1980) Opioid blockade and social comfort in chicks. Pharmacol Biochem Behav 13:673–683. doi:10.1016/0091-3057(80)90011-8

    Article  CAS  PubMed  Google Scholar 

  • Powell J (2006) Skin physiology. Women Health Med 3:130–133. doi:10.1383/wohm.2006.3.3.130

    Article  Google Scholar 

  • Renick SE, Kleven DT, Chan J, Stenius K, Milner TA, Pickel VM, Fremeau RT Jr (1999) The mammalian brain high-affinity L-proline transporter is enriched preferentially in synaptic vesicles in a subpopulation of excitatory nerve terminals in rat forebrain. J Neurosci 19:21–33

    CAS  PubMed  Google Scholar 

  • Sahley TL, Panksepp J, Zolovick AJ (1981) Cholinergic modulation of separation distress in the domestic chick. Eur J Pharmacol 72:261–264. doi:10.1016/0014-2999(81)90283-1

    Article  CAS  PubMed  Google Scholar 

  • Sigemi K, Tsuneyoshi Y, Hamasu K, Han L, Hayamizu K, Denbow PM, Furuse M (2008) L-Serine induces sedative and hypnotic effects acting at GABA (A) receptors in neonatal chicks. Eur J Pharmacol 599:86–90

    Google Scholar 

  • Snyder SH, Young AB, Bennett JP, Mulder AH (1973) Synaptic biochemistry of amino acids. Fed Proc 32:2039–2047

    CAS  PubMed  Google Scholar 

  • Takagi T, Ando R, Ohgushi A, Yamashita T, Dobashi E, Hussain-Yusuf H, Onodera R, Bungo T, Sato H, Furuse M (2001) Intracerebroventricular injection of pipecolic acid inhibits food intake and induces sleeping-like behaviors in the neonatal chick. Neurosci Lett 310:97–100. doi:10.1016/S0304-3940(01)02059-6

    Article  CAS  PubMed  Google Scholar 

  • Tanida M, Katsuyama M, Sakatani K (2007) Relation between mental stress-induced prefrontal cortex activity and skin conditions: a near-infrared spectroscopy study. Brain Res 1184:210–216. doi:10.1016/j.brainres.2007.09.058

    Article  CAS  PubMed  Google Scholar 

  • Uitto J (1971) Collagen biosynthesis in human skin. Ann Clin Res 3:250–258

    CAS  PubMed  Google Scholar 

  • Van Luijtelaar ELJM, van der Grinten CPM, Blokhuis HJ, Coenen AML (1987) Sleep in the domestic hen (Gallus domesticus). Physiol Behav 41:409–414. doi:10.1016/0031-9384(87)90074-6

    Article  PubMed  Google Scholar 

  • Yoneda S, Roberts E (1982) A new synaptosomal biosynthetic pathway of proline from ornithine and its negative feedback inhibition by proline. Brain Res 239:479–488. doi:10.1016/0006-8993(82)90523-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (No. 18208023) and the SKYLARK Food Science Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Furuse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamasu, K., Shigemi, K., Tsuneyoshi, Y. et al. Intracerebroventricular injection of L-proline and D-proline induces sedative and hypnotic effects by different mechanisms under an acute stressful condition in chicks. Amino Acids 38, 57–64 (2010). https://doi.org/10.1007/s00726-008-0204-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0204-9

Keywords

Navigation