Skip to main content

Advertisement

Log in

Metabolomics in pesticide research and development: review and future perspectives

  • REVIEW ARTICLE
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The emerge of metabolomics within functional genomics has provided a new dimension in the study of biological systems. In regards to the study of agroecosystems, metabolomics enables monitoring of metabolic changes in association with biotic or abiotic agents such as agrochemicals. Focusing on crop protection chemicals, a great effort has been given towards the development of crop protection agents safer for consumers and the environment and more efficient than the existing ones. Within this framework, metabolomics has so far been a valuable tool for high-throughput screening of bioactive substances in order to discover those with high selectivity, unique modes-of-action, and acceptable eco-toxicological/toxicological profiles. Here, applications of metabolomics in the investigation of the modes-of-action and ecotoxicological–toxicological risk assessment of bioactive compounds, mining of biological systems for the discovery of bioactive metabolites, and the risk assessment of genetic modified crops are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams, M. D., Celniker, S. E., Holt, R. A., et al. (2000). The genome sequence of Drosophila melanogaster. Science, 287, 2185–2195.

    PubMed  Google Scholar 

  • Aharoni, A., de Vos, C. H. R., Verhoeven, H. A., et al. (2002). Non-targeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry. OMICS, 6, 217–234.

    CAS  PubMed  Google Scholar 

  • Akiyama, K., Chikayama, E., Yuasa, H., et al. (2008). PRIMe: A Web site that assembles tools for metabolomics and transcriptomics. In Silico Biology, 8, 339–345.

    CAS  PubMed  Google Scholar 

  • Aliferis, K. A., & Chrysayi-Tokousbalides, M. (2006). Metabonomic strategy for the investigation of the mode of action of the phytotoxin (5S, 8R, 13S, 16R)-(−)-pyrenophorol using 1H nuclear magnetic resonance fingerprinting. Journal of Agriculture and Food Chemistry, 54, 1687–1692.

    CAS  Google Scholar 

  • Aliferis, K. A., & Jabaji, S. (2009). Metabolic fingerprinting of the plant-pathogen pathosystem, Rhizoctonia solani-Solanum tuberosum using Fourier transform mass spectrometry (FT-ICR/MS). In Proc. XIV congress on Molecular Plant-Microbe Interactions (MPMI) (p. 32).

  • Aliferis, K. A., & Jabaji, S. (2010). 1H NMR and GC–MS metabolic fingerprinting of developmental stages of Rhizoctonia solani sclerotia. Metabolomics, 6, 96–108.

    CAS  Google Scholar 

  • Aliferis, K. A., Materzok, S., Paziotou, G., & Chrysayi-Tokousbalides, M. (2009). Lemna minor L. as a model organism for ecotoxicological studies performing 1H NMR fingerprinting. Chemosphere, 76, 967–973.

    CAS  PubMed  Google Scholar 

  • Allen, J., Davey, H. M., Broadhurst, D., Rowland, J. J., Oliver, S. G., & Kell, D. B. (2004). Discrimination of modes of action of antifungal substances by use of metabolic footprinting. Applied and Environmental Microbiology, 70, 6157–6165.

    CAS  PubMed  Google Scholar 

  • Allen, J. K., Davey, H. M., Broadhurst, D., et al. (2003). High-throughput characterisation of yeast mutants for functional genomics using metabolic footprinting. Nature Biotechnology, 21, 692–696.

    CAS  PubMed  Google Scholar 

  • Allwood, J. W., Ellis, D. I., & Goodacre, R. (2008). Metabolomic technologies and their application to the study of plants and plant-host interactions. Physiologia Plantarum, 132, 117–135.

    CAS  PubMed  Google Scholar 

  • Allwood, J. W., Erban, A., de Koning, S., et al. (2009). Inter-laboratory reproducibility of fast gas chromatography-electron impact-time of flight mass spectrometry (GC-EI-TOF/MS) based plant metabolomics. Metabolomics, 5, 479–496.

    CAS  PubMed  Google Scholar 

  • Allwood, J. W., & Goodacre, R. (2010). HPLC instrumentation applied in plant metabolomic analyses. Phytochemical Analysis, 21, 33–47.

    CAS  PubMed  Google Scholar 

  • Aranibar, N., Singh, B. J., Stockton, G. W., & Ott, K. H. (2001). Automated mode of action detection by metabolic profiling. Biochemical and Biophysical Research Communications, 286, 150–155.

    CAS  PubMed  Google Scholar 

  • Atherton, H. J., Bailey, N. J., Zhang, W., et al. (2006). A combined 1H-NMR spectroscopy-and mass spectrometry-based metabolomic study of the PPAR-α null mutant mouse defines profound systemic changes in metabolism linked to the metabolic syndrome. Physiological Genomics, 27, 178–186.

    CAS  PubMed  Google Scholar 

  • Balba, H. (2007). Review of strobilurin fungicide chemicals. Journal of Environmental Science and Health, 42, 441–451.

    CAS  PubMed  Google Scholar 

  • Baran, R., Kochi, H., Saito, N., et al. (2006). MathDAMP: A package for differential analysis of metabolite profiles. BMC Bioinformatics, 7, 530.

    PubMed  Google Scholar 

  • Bednarek, P., Schneider, B., Svatos, A., Oldham, N. J., & Hahlbrock, K. (2005). Structural complexity, differential response to infection and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots. Plant Physiology, 138, 1058–1070.

    CAS  PubMed  Google Scholar 

  • Betz, F. S., Hammond, B. G., & Fuchs, R. L. (2000). Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regulatory Toxicology and Pharmacology, 32, 156–173.

    CAS  PubMed  Google Scholar 

  • Bezemer, T. M., & van Dam, N. M. (2005). Linking aboveground and belowground interactions via induced plant defences. Trends in Ecology & Evolution, 20, 617–624.

    Google Scholar 

  • Biais, B., Allwood, J. W., Deborde, C., et al. (2009). 1H NMR, GC-EI-TOFMS, and data set correlation for fruit metabolomics: Application to spatial metabolite analysis in melon. Analytical Chemistry, 81, 2884–2894.

    CAS  PubMed  Google Scholar 

  • Böcker, S., Letzel, M. C., Lipták, Z., & Pervukhin, A. (2009). SIRIUS: Decomposing isotope patterns for metabolite identification. Bioinformatics, 25, 218–224.

    PubMed  Google Scholar 

  • Börner, J., Buchinger, S., & Schomburg, D. (2007). A high-throughput method for microbial metabolome analysis using gas chromatography/mass spectrometry. Analytical Biochemistry, 367, 143–151.

    PubMed  Google Scholar 

  • Breitling, R., Ritchie, S., Goodenowe, D., Stewart, M. L., & Barrett, M. P. (2006). Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data. Metabolomics, 2, 155–164.

    CAS  Google Scholar 

  • Broeckling, C. D., Reddy, I. R., Duran, A. L., Zhao, X., & Sumner, L. W. (2006). MET-IDEA: Data extraction tool for mass spectrometry-based metabolomics. Analytical Chemistry, 78, 4334–4341.

    CAS  PubMed  Google Scholar 

  • Bundy, J. G., Davey, M. P., & Viant, M. R. (2009). Environmental metabolomics: A critical review and future perspectives. Metabolomics, 5, 3–21.

    CAS  Google Scholar 

  • Bundy, J. G., Lenz, E. M., Bailey, N. J., et al. (2002). Metabonomic assessment of toxicity of 4-fluoroaniline,3,5-difluoroaniline and 2-fluoro-4-methylaniline to the earthworm Eisenia veneta (Rosa): Identification of new endogenous biomarkers. Environmental Toxicology and Chemistry, 21, 1966–1972.

    CAS  PubMed  Google Scholar 

  • Carraro, S., Giordano, G., Reniero, F., Perilongo, G., & Baraldi, E. (2009). Metabolomics: A new frontier for research in pediatrics. Journal of Pediatrics, 154, 638–644.

    PubMed  Google Scholar 

  • Caspi, R., Foerster, H., Fulcher, C. A., et al. (2008). The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Research, 36, D623–D631.

    CAS  PubMed  Google Scholar 

  • Castrillo, J. I., Hayes, A., Mohammed, S., Gaskell, S. J., & Oliver, S. G. (2003). An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochemistry, 62, 929–937.

    CAS  PubMed  Google Scholar 

  • Catchpole, G. S., Beckmann, M., Enot, D. P., et al. (2005). Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proceedings of the National Academy of Sciences of the United States of America, 102, 14458–14462.

    CAS  PubMed  Google Scholar 

  • Cevallos-Cevallos, J. M., Reyes-De-Corcuera, J. I., Etxeberria, E., Danyluk, M. D., & Rodrick, G. E. (2009). Metabolomic analysis in food science: A review. Trends in Food Science & Technology, 20, 557–566.

    CAS  Google Scholar 

  • Chen, J. H., Linstead, E., Swamidass, S. J., Wang, D., & Baldi, P. (2007). ChemDB update-full-text search and virtual chemical space. Bioinformatics, 23, 2348–2351.

    CAS  PubMed  Google Scholar 

  • Choi, H.-K., Choi, Y. H., Verberne, M., Lefeber, A. W. M., Erkelens, C., & Verpoorte, R. (2004a). Metabolic fingerprinting of wild type and transgenic tobacco plants by 1H NMR and multivariate analysis techniques. Phytochemistry, 65, 857–864.

    CAS  PubMed  Google Scholar 

  • Choi, H.-C., Kim, H. K., Linthorst, H. J. M., et al. (2006). NMR metabolomics to revisit the tobacco mosaic virus infection in Nicotiana tobacum leaves. Journal of Natural Products, 69, 742–748.

    CAS  PubMed  Google Scholar 

  • Choi, Y. H., Tapias, E. C., Kim, H. K., et al. (2004b). Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. Plant Physiology, 135, 2398–2410.

    CAS  PubMed  Google Scholar 

  • Chong, W. P. K., Goh, L. T., Reddy, S. G., et al. (2009). Metabolomics profiling of extracellular metabolites in recombinant Chinese hamster ovary fed-batch culture. Rapid Communications in Mass Spectrometry, 23, 3763–3771.

    CAS  PubMed  Google Scholar 

  • Copping, L. G., & Duke, S. O. (2007). Natural products that have been used commercially as crop protection agents—a review. Pest Management Science, 63, 524–554.

    CAS  PubMed  Google Scholar 

  • Cuadros-Inostroza, Á., Caldana, C., Redestig, H., et al. (2009). TargetSearch-a Bioconductor package for the efficient preprocessing of GC–MS metabolite profiling data. BMC Bioinformatics, 10, 428.

    PubMed  Google Scholar 

  • Cui, Q., Lewis, I. A., Hegeman, A. D., et al. (2008). Metabolite identification via the Madison Metabolomics Consortium Database. Nature Biotechnology, 26, 162–164.

    CAS  PubMed  Google Scholar 

  • Dai, X., Wang, G., Yang, D. S., et al. (2010). TrichOME: A comparative omics database for plant trichomes. Plant Physiology, 152, 44–54.

    CAS  PubMed  Google Scholar 

  • Dayan, F. E., Cantrell, C. L., & Duke, S. O. (2009). Natural products in crop protection. Bioorganic and Medicinal Chemistry, 17, 4022–4034.

    CAS  PubMed  Google Scholar 

  • Defernez, M., & Colquhoun, I. J. (2003). Factors affecting the robustness of metabolite fingerprinting using 1H NMR spectra. Phytochemistry, 62, 1009–1017.

    CAS  PubMed  Google Scholar 

  • Degtyarenko, K., de Matos, P., Ennis, M., et al. (2008). ChEBI: A database and ontology for chemical entities of biological interest. Nucleic Acids Research, 36, D344–D350.

    CAS  PubMed  Google Scholar 

  • Demyttenaere, J. C. R., Moriña, R. M., & Sandra, P. (2003). Monitoring and fast detection of mycotoxins-producing fungi based on headspace solid phase microextraction and headspace sorptive extraction of the volatile metabolites. Journal of Chromatography A, 985, 127–135.

    CAS  PubMed  Google Scholar 

  • Desneux, N., Decourtye, A., & Delpuech, J.-M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81–106.

    CAS  PubMed  Google Scholar 

  • Dixon, R. A. (2001). Natural products and plant disease resistance. Nature, 411, 843–847.

    CAS  PubMed  Google Scholar 

  • Dona, A., & Arvanitogiannis, I. S. (2009). Health risks of genetically modified foods. Critical Reviews in Food Science and Nutrition, 49, 164–175.

    CAS  PubMed  Google Scholar 

  • Duke, S. O. (2005). Taking stock of herbicide-resistant crops ten years after introduction. Pest Management Science, 61, 211–218.

    CAS  PubMed  Google Scholar 

  • Dunn, W. B. (2008). Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes. Physical Biology, 5, 1–24.

    Google Scholar 

  • Duran, A. L., Yang, J., Wang, L., & Sumner, L. W. (2003). Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics, 19, 2283–2293.

    CAS  PubMed  Google Scholar 

  • EFSA. (2005). Guidance document of the scientific panel on genetically modified organisms for the risk assessment of genetically modified plants and derived food feed. EFSA Journal, 99, 1–94.

    Google Scholar 

  • Ekman, D. R., Keun, H. C., Eads, C. D., et al. (2006). Metabolomic evaluation of rat liver and testis to characterize the toxicity of triazole fungicides. Metabolomics, 2, 63–73.

    CAS  Google Scholar 

  • Eriksson, L., Johansson, E., Kettaneh-Wold, N., & Wold, S. (2001). Multi- and megavariate data analysis. Principles and applications. Umeå, Sweden: Umetrics Academy.

    Google Scholar 

  • Fahy, E., Sud, M., Cotter, D., & Subramaniam, S. (2007). LIPID MAPS online tools for lipid research. Nucleic Acids Research, 35, W606–W612.

    PubMed  Google Scholar 

  • FAO. (1996). Joint FAO/WHO Expert consultation on biotechnology and food safety. Food and Agriculture Organisation of the United Nations. ftp://ftp.fao.org/es/esn/food/biotechnology.pdf.

  • FAO/WHO. (2000). Safety aspects of genetically modified foods of plant origin. Report of a Joint FAO/WHO Expert Consultation on Foods Derived from Biotechnology. Geneva, Switzerland: WHO. ftp://ftp.fao.org/es/esn/food/gmreport.pdf.

  • FAO/WHO. (2001). Evaluation of allergenicity of genetically modified foods. Report of a Joint FAO/WHO Expert Consultation on Foods Derived from Biotechnology. http://www.fao.org/es/esn/allergygm.pdf.

  • Fardet, A., Llorach, R., & Martin, J.-F. (2008). Liquid chromatography-quadrupole time-of-flight (LC-QTOF)-based metabolomic approach reveals new metabolic effects of catechin in rats fed high-fat diets. Journal of Proteome Research, 7, 2388–2398.

    CAS  PubMed  Google Scholar 

  • Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161.

    CAS  PubMed  Google Scholar 

  • Fiehn, O., Wohlgemuth, G., & Scholz, M. (2005). Setup and annotation of metabolomic experiments by integrating biological and mass spectrometric metadata. In B. Ludäscher & L. Raschid (Eds.), Data integration in the life sciences-lecture notes in computer science (Vol. 3615, pp. 224–239). Heidelberg: Springer Berlin.

  • Forgue, P., Halouska, S., Werth, M., Xu, K., Harris, S., & Powers, R. (2006). NMR metabolic profiling of Aspergillus nidulans to monitor drug and protein activity. Journal of Proteome Research, 5, 1916–1923.

    CAS  PubMed  Google Scholar 

  • Frankart, C., Eullaffroy, P., & Vernet, G. (2002). Photosynthetic responses of Lemna minor exposed to xenobiotics, copper, and their combinations. Ecotoxicology and Environmental Safety, 53, 439–445.

    CAS  PubMed  Google Scholar 

  • Gaida, A., & Neumann, S. (2007). MetHouse: Raw and preprocessed mass spectrometry data. Journal of Integrative Bioinformatics, 4, 56.

    Google Scholar 

  • Gao, J., Tarcea, V. G., Karnovsky, A., et al. (2010). Metscape: A Cytoscape plug-in for visualizing and interpreting metabolomic data in the context of human metabolic networks. Bioinformatics, 26, 971–973.

    CAS  PubMed  Google Scholar 

  • Garcia-Villalba, R., Leon, C., Dinelli, G., et al. (2008). Comparative metabolomic study of transgenic versus conventional soybean using capillary electrophoresis-time-of-flight mass spectrometry. Journal of Chromatography A, 1195, 164–173.

    CAS  PubMed  Google Scholar 

  • Guillarme, D., Schappler, J., Rudaz, S., & Veuthey, J.-L. (2010). Coupling ultra-high-pressure liquid chromatography with mass spectrometry. Trends in Analytical Chemistry, 29, 15–27.

    CAS  Google Scholar 

  • Günther, S., Kuhn, M., Dunkel, M., et al. (2008). SuperTarget and Matador: Resources for exploring drug-target relationships. Nucleic Acids Research, 36, D919–D922.

    PubMed  Google Scholar 

  • Guo, Q., Sidhu, J. K., & Ebbels, T. M. D. (2009). Validation of metabolomics for toxic mechanism of action screening with the earthworm Lumbricus rubellus. Metabolomics, 5, 72–83.

    CAS  Google Scholar 

  • Hall, R. D., Brouwer, I. D., & Fitzgerald, M. A. (2008). Plant metabolomics and its potential application for human nutrition. Physiologia Plantarum, 132, 162–175.

    CAS  PubMed  Google Scholar 

  • Holt, R. A., Subramanian, G. M., Halpern, A., et al. (2002). The genome sequence of the malaria mosquito Anopheles gambiae. Science, 298, 129–149.

    CAS  PubMed  Google Scholar 

  • Horai, H., Arita, M., & Nishioka, T. (2008). Comparison of ESI-MS spectra in MassBank database. Proceedings of the International Conference on Biomedical Engineering Informatics, 2, 853–857.

    Google Scholar 

  • Hu, Q., Noll, R. J., Li, H., et al. (2005). The Orbitrap: A new mass spectrometer. Journal of Mass Spectrometry and Ion Physics, 40, 430–443.

    CAS  Google Scholar 

  • Huang, K., Xia, L., Zhang, Y., Ding, X., & Zahn, J. A. (2009). Recent advances in the biochemistry of spinosyns. Applied Microbiology and Biotechnology, 82, 13–23.

    CAS  PubMed  Google Scholar 

  • Hunter, P. (2009). Reading the metabolic fine print. The application of metabolomics to diagnostics, drug research and nutrition might be integral to improved health and personalized medicine. EMBO Reports, 10, 20–23.

    CAS  PubMed  Google Scholar 

  • Iijima, Y., Nakamura, Y., Ogata, Y., et al. (2008). Metabolite annotations based on the integration of mass spectral information. Plant Journal, 54, 949–962.

    CAS  PubMed  Google Scholar 

  • International Organization for Standardization. (2003). Water quality-Determination of toxic effect of water constituents and waste water to duckweed ( Lemna minor )-Duckweed growth inhibition test. ISO/DIS 20079 (draft). Geneva, Switzerland.

  • Jansen, J. J., Allwood, J. W., Marsden-Edwards, E., van der Putten, W. H., Goodacre, R., & van Dam, N. M. (2009). Metabolomic analysis of the interaction between plants and herbivores. Metabolomics, 5, 150–161.

    CAS  Google Scholar 

  • Jeschke, P., & Nauen, R. (2008). Neonicotinoids-from zero to hero in insecticide chemistry. Pest Management Science, 64, 1084–1098.

    CAS  PubMed  Google Scholar 

  • Junker, B. H., Klukas, C., & Schreiber, F. (2006). VANTED: A system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics, 7, 109.

    PubMed  Google Scholar 

  • Jutsum, A. R., Heaney, S. P., Bob, M., et al. (1998). Pesticide resistance: Assessment of risk and the development and implementation of effective management strategies. Pesticide Science, 54, 435–446.

    CAS  Google Scholar 

  • Kaddurah-Daouk, R., & Krishnan, K. R. R. (2009). Metabolomics: A global biochemical approach to the study of central nervous system diseases. Neuropsychopharmacology Review, 34, 173–186.

    CAS  Google Scholar 

  • Kaderbhai, N. N., Broadhurst, D. I., Ellis, D. I., Goodacre, R., & Kell, D. B. (2003). Functional genomics via metabolic footprinting: Monitoring metabolite secretion by Escherichia coli tryptophan metabolism mutants using FT-IR and direct injection electrospray mass spectrometry. Comparative and Functional Genomics, 4, 376–391.

    CAS  PubMed  Google Scholar 

  • Kamleh, M. A., Hobani, Y., Dow, J. A. T., & Watson, D. G. (2008). Metabolomic profiling of Drosophila using liquid chromatography Fourier transform mass spectrometry. FEBS Letter, 582, 2916–2922.

    CAS  Google Scholar 

  • Kanehisa, M., Goto, S., Hattori, M., et al. (2006). From genomics to chemical genomics: New developments in KEGG. Nucleic Acids Research, 34, D354–D357.

    CAS  PubMed  Google Scholar 

  • Karp, P. D., Ouzounis, C. A., Moore-Kochlacs, C., et al. (2005). Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Research, 33, 6083–6089.

    CAS  PubMed  Google Scholar 

  • Kastanias, M. A., & Chrysayi-Tokousbalides, M. (2000). Herbicidal potential of pyrenophorol isolated from a Drechslera avenae pathotype. Pest Management Science, 56, 227–232.

    CAS  Google Scholar 

  • Katajamaa, M., Miettinen, J., & Orešič, M. (2006). MZmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics, 22, 634–636.

    CAS  PubMed  Google Scholar 

  • Katz, J. E., Dumlao, D. S., Clarke, S., & Hau, J. (2004). A new technique (COMSPARI) to facilitate the identification of minor compounds in complex mixtures by GC/MS and LC/MS: Tools for the visualization of matched datasets. Journal of the American Society for Mass Spectrometry, 15, 580–584.

    CAS  PubMed  Google Scholar 

  • Kell, D. B., Brown, M., Davey, H. M., Dunn, W. B., Spasic, I., & Oliver, S. G. (2005). Metabolic footprinting and systems biology: The medium is the message. Nature Reviews Microbiology, 3, 557–565.

    CAS  PubMed  Google Scholar 

  • Kenneke, J. F., Ekman, D. R., Mazur, C. S., et al. (2010). Integration of metabolomics and in vitro metabolism assays for investigating the stereoselective transformation of triadimefon in rainbow trout. Chirality, 22, 183–192.

    CAS  PubMed  Google Scholar 

  • Kerber, A., Laue, R., Meringer, M., & Varmuza, K. (2001). MOLGEN-MS: Evaluation of low resolution electron impact mass spectra with MS classification and exhaustive structure generation. Advanced Mass Spectrometry, 15, 939–940.

    CAS  Google Scholar 

  • Keseler, I. M., Bonavides-Martinez, C., & Collado-Vides, J. (2009). EcoCyc: A comprehensive view of Escherichia coli biology. Nucleic Acids Research, 37, D464–D470.

    CAS  PubMed  Google Scholar 

  • Kim, K.-B., Kim, S. H., & Um, S. Y. (2009). Metabolomics approach to risk assessment: Methoxyclor exposure in rats. Journal of Toxicology and Environmental Health, 72, 1352–1368.

    CAS  PubMed  Google Scholar 

  • Kind, T., & Fiehn, O. (2007). Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics, 8, 105.

    PubMed  Google Scholar 

  • Klukas, C., & Schreiber, F. (2007). Dynamic exploration and editing of KEGG pathway diagrams. Bioinformatics, 23, 344–350.

    CAS  PubMed  Google Scholar 

  • Kopka, J., Schauer, N., Krueger, S., et al. (2005). GMDB@CSB.DB: The Golm Metabolome database. Bioinformatics, 21, 1635–1638.

    CAS  PubMed  Google Scholar 

  • Kos, M., van Loon, J. J., Dicke, M., & Vet, L. E. (2009). Transgenic plants as vital components of integrated pest management. Trends in Biotechnology, 27, 621–627.

    CAS  PubMed  Google Scholar 

  • Koulman, A., Woffendin, G., Narayana, V. K., et al. (2009). High-resolution extracted ion chromatography, a new tool for metabolomics and lipidomics using a second-generation Orbitrap mass spectrometer. Rapid Communications in Mass Spectrometry, 23, 1411–1418.

    CAS  PubMed  Google Scholar 

  • Kralya, J. R., Holcomba, R. E., Guana, Q., & Henry, C. S. (2009). Review: Microfluidic applications in metabolomics and metabolic profiling. Analytica Chimica Acta, 653, 23–35.

    Google Scholar 

  • Krishnan, P., Kruger, N. J., & Ratcliffe, R. G. (2005). Metabolite fingerprinting and profiling in plants using NMR. Journal of Experimental Botany, 56, 255–265.

    CAS  PubMed  Google Scholar 

  • Kuhn, M., Szklarczyk, D., Franceschini, A., et al. (2010). STITCH 2: An interaction network database for small molecules and proteins. Nucleic Acids Research, 38, D552–D556.

    CAS  PubMed  Google Scholar 

  • Lange, L., & Lopez, C. S. (1996). Micro-organisms as a source of biologically active secondary metabolites. In L. G. Copping (Ed.), Crop protection agents from nature. Natural products and analogues (pp. 1–26). Cambridge: The Royal Society of Chemistry.

  • Le Gall, G., Colquhoun, I. J., Davis, A. L., Collins, G. J., & Verhoeyen, M. E. (2003). Metabolite profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. Journal of Agriculture and Food Chemistry, 51, 2447–2456.

    Google Scholar 

  • Lee, S. H., Woo, H. M., & Jung, B. H. (2007). Metabolomic approach to evaluate the toxicological effects of nonylphenol with rat urine. Analytical Chemistry, 79, 6102–6110.

    CAS  PubMed  Google Scholar 

  • Leiss, K. A., Choi, Y. H., Abdel-Farid, I. B., Verpoorte, R., & Klinkhamer, P. G. L. (2009). NMR metabolomics of thrips (Frankliniella occidentalis) resistance in senecio hybrids. Journal of Chemical Ecology, 35, 219–229.

    CAS  PubMed  Google Scholar 

  • Leon, C., Rodriguez-Meizoso, I., Lucio, M., et al. (2009). Metabolomics of transgenic maize combining Fourier transform-ion cyclotron resonance-mass spectrometry, capillary electrophoresis-mass spectrometry and pressurized liquid extraction. Journal of Chromatography A, 1216, 7314–7323.

    CAS  PubMed  Google Scholar 

  • Li, X., Schuler, M. A., & Berenbaum, M. R. (2007). Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology, 52, 231–253.

    PubMed  Google Scholar 

  • Lindon, J. C. (2003). HPLC-NMR-MS: Past, present and future. Drug Discovery Today, 8, 1021–1022.

    PubMed  Google Scholar 

  • Lindon, J. C., Holmes, E., & Nicholson, J. K. (2007). Metabonomics in pharmaceutical R&D. FEBS Journal, 274, 1140–1151.

    CAS  PubMed  Google Scholar 

  • Lindon, J. C., Keun, H. C., Ebbels, T. M., Pearce, J. M., Holmes, E., & Nicholson, J. K. (2005). The consortium for metabonomic toxicology (COMET): Aims, activities and achievements. Pharmacogenomics, 6, 691–699.

    CAS  PubMed  Google Scholar 

  • Lindon, J. C., & Nicholson, J. K. (2008a). Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics. Annual Review of Analytical Chemistry, 1, 45–69.

    CAS  PubMed  Google Scholar 

  • Lindon, J. C., & Nicholson, J. K. (2008b). Analytical technologies for metabonomics and metabolomics, and multi-omic information recovery. Trends in Analytical Chemistry, 27, 194–204.

    CAS  Google Scholar 

  • Lindon, J. C., Nicholson, J. K., & Wilson, I. D. (2000). Directly coupled HPLC-NMR and HPLC-NMR-MS in pharmaceutical research and development. Journal of Chromatography B: Biomedical Sciences and Applications, 748, 233–258.

    CAS  Google Scholar 

  • Linstrom, P. J., & Mallard, W. G. (2001). The NIST Chemistry WebBook: A chemical data resource on the internet. Journal of Chemical & Engineering Data, 46, 1059–1063.

    CAS  Google Scholar 

  • Liu, Y., Wen, J., Wang, Y., Li, Y., & Xu, W. (2010). Postulating modes of action of compounds with antimicrobial activities through metabolomics analysis. Chromatographia, 71, 253–258.

    CAS  Google Scholar 

  • López-Gresa, M. P., Maltese, F., Bellés, J. M., et al. (2010). Metabolic response of tomato leaves upon different plant-pathogen interactions. Phytochemical Analysis, 21, 89–94.

    PubMed  Google Scholar 

  • Lv, Y., Liu, X., Yan, S., et al. (2010). Metabolomic study of myocardial ischemia and intervention effects of compound Danshen tablets in rats using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 52, 129–135.

    CAS  PubMed  Google Scholar 

  • Ma, Z., & Michailides, T. J. (2005). Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection, 24, 853–863.

    CAS  Google Scholar 

  • Malmendal, A., Overgaard, J., Bundy, J. G., et al. (2006). Metabolomic profiling of heat stress: Hardening and recovery of homeostasis in Drosophila. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 291, 205–212.

    Google Scholar 

  • Manetti, C., Bianchetti, C., Casciani, L., et al. (2006). A metabonomic study of transgenic maize (Zea mays) seeds revealed variations in osmolytes and branched amino acids. Journal of Experimental Botany, 57, 2613–2625.

    CAS  PubMed  Google Scholar 

  • Markley, J. L. (2007). NMR analysis goes nano. Nature Biotechnology, 25, 750–751.

    CAS  PubMed  Google Scholar 

  • Mas, S., Villas-Bôas, S. G., Hansen, M. E., Åkesson, M., & Nielsen, J. (2007). A comparison of direct infusion MS and GC–MS for metabolic footprinting of yeast mutants. Biotechnology and Bioengineering, 96, 1014–1022.

    CAS  PubMed  Google Scholar 

  • Masciocchi, J., Frau, G., Fanton, M., et al. (2009). MMsINC: A large-scale chemoinformatics database. Nucleic Acids Research, 37, 284–290.

    Google Scholar 

  • McKelvie, J. R., Yuk, J., Xu, Y., Simpson, A. J., & Simpson, M. J. (2009). 1H NMR and GC/MS metabolomics of earthworm responses to sub-lethal DDT and endosulfan exposure. Metabolomics, 5, 84–94.

    CAS  Google Scholar 

  • Michel, A., Johnson, R. D., Duke, S. O., & Scheffler, B. E. (2004). Dose-response relationships between herbicides with different modes of action and growth of Lemna paucicostata: An improved ecotoxicological method. Environmental Toxicology and Chemistry, 23, 1074–1079.

    CAS  PubMed  Google Scholar 

  • Miller, M. G. (2007). Environmental metabolomics: A SWOT analysis (strengths, weaknesses, opportunities, and threats). Journal of Proteome Research, 6, 540–545.

    CAS  PubMed  Google Scholar 

  • Mirnezhad, M., Romero-González, R. R., Leiss, K. A., Choi, Y. H., Verpoorte, R., & Klinkhamer, P. G. L. (2010). Metabolomic analysis of host plant resistance to thrips in wild and cultivated tomatoes. Phytochemical Analysis, 21, 110–117.

    CAS  PubMed  Google Scholar 

  • Moco, S., Forshed, J., De Vos, R. C. H., et al. (2008). Intra- and inter-metabolite correlation spectroscopy of tomato metabolomics data obtained by liquid chromatography–mass spectrometry and nuclear magnetic resonance. Metabolomics, 4, 202–215.

    CAS  Google Scholar 

  • Mohan, B. S., & Hosetti, B. B. (1999). Aquatic plants for toxicity assessment. Environmental Research, 81, 259–274.

    CAS  PubMed  Google Scholar 

  • Mohler, R. E., Dombek, K. M., Hoggard, J. C., Pierce, K. M., Young, E. T., & Synovec, R. E. (2007). Comprehensive analysis of yeast metabolite GC×GC-TOFMS data: Combining discovery-mode and deconvolution chemometric software. Analyst, 132, 756–767.

    CAS  PubMed  Google Scholar 

  • Monton, M. R. N., & Soga, T. (2007). Metabolome analysis by capillary electrophoresis-mass spectrometry. Journal of Chromatography A, 1168, 237–246.

    CAS  PubMed  Google Scholar 

  • Nauen, R., & Bretschneider, T. (2002). New modes of action of insecticides. Pesticide Outlook, 13, 241–245.

    CAS  Google Scholar 

  • OECD. (1993). Safety evaluation of foods derived by modern biotechnology, concepts and principles. Organisation for Economic Cooperation and Development. http://www.agbios.com/docroot/articles/oecd_fsafety_1993.pdf.

  • OECD. (2002a). Guidelines for the testing of chemicals. Revised proposal for a new guideline 221, Lemna sp. growth inhibition test. http://www.oecd.org/dataoecd/16/51/1948054.pdf.

  • OECD. (2002b). Module II: Herbicide biochemistry, herbicide metabolism and the residues in glufosinate-ammonium (phosphinothricin)-tolerant transgenic plants. Series on harmonization of regulatory oversight in biotechnology No. 25 http://www.olis.oecd.org/olis/2002doc.nsf/LinkTo/env-jm-mono(2002)14.

  • Ohta, T., Masutomi, N., Tsutsui, N., et al. (2009). Untargeted metabolomic profiling as an evaluative tool of fenofibrate-induced toxicology in Fischer 344 male rats. Toxicologic Pathology, 37, 521–535.

    CAS  PubMed  Google Scholar 

  • Oikawa, A., Nakamura, Y., Ogura, T., et al. (2006). Clarification of pathway-specific inhibition by Fourier transform ion cyclotron resonance/mass spectrometry-based metabolic phenotyping studies. Plant Physiology, 142, 398–413.

    CAS  PubMed  Google Scholar 

  • Okada, T., Nakamura, Y., Kanaya, S., et al. (2009). Metabolome analysis of ephedra plants with different contents of ephedrine alkaloids by using UPLC-Q-TOF-MS. Planta Medica, 75, 1356–1362.

    CAS  PubMed  Google Scholar 

  • Ott, K. H., Aranibar, N., Singh, B., & Stockton, G. W. (2003). Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts. Phytochemistry, 62, 971–985.

    CAS  PubMed  Google Scholar 

  • Ott, M. A., & Vriend, G. (2006). Correcting ligands, metabolites, and pathways. BMC Bioinformatics, 7, 517.

    PubMed  Google Scholar 

  • Owen, M. D. K., & Zelaya, I. A. (2005). Herbicide-resistant crops and weed resistance to herbicides. Pest Management Science, 61, 301–311.

    CAS  PubMed  Google Scholar 

  • Pandher, R., Ducruix, C., Eccles, S. A., & Raynaud, F. I. (2009). Cross-platform Q-TOF validation of global exo-metabolomic analysis: Application to human glioblastoma cells treated with the standard PI 3-Kinase inhibitor LY294002. The Journal of Chromatography B, 877, 1352–1358.

    CAS  Google Scholar 

  • Pedersen, K. S., Kristensen, T. N., Loeschcke, V., et al. (2008). Metabolomic signatures of inbreeding at benign and stressful temperatures in Drosophila melanogaster. Genetics, 180, 1233–1243.

    CAS  PubMed  Google Scholar 

  • Piccioni, F., Capitani, D., Zolla, L., & Mannina, L. (2009). NMR metabolic profiling of transgenic maize with the Cry1Ab gene. Journal of Agriculture and Food Chemistry, 57, 6041–6049.

    CAS  Google Scholar 

  • Poole, R. L. (2008). The TAIR Database. In D. Edwards (Ed.), Methods in molecular biology, plant bioinformatics: Methods and protocols (pp. 179–212). Totowa, NJ: Humana Press Inc.

    Google Scholar 

  • Raamsdonk, L. M., Teusink, B., & Broadhurst, D. (2001). A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnology, 19, 45–50.

    CAS  PubMed  Google Scholar 

  • Ramautar, R., Demirci, A., & de Jong, G. J. (2006). Capillary electrophoresis in metabolomics. Trends in Analytical Chemistry, 25, 455–466.

    CAS  Google Scholar 

  • Ratcliffe, R. G., & Shachar-Hill, Y. (2001). Probing plant metabolism with NMR. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 499–526.

    CAS  PubMed  Google Scholar 

  • REACH. (2006). Registration, evaluation, authorisation and restriction of chemicals REACH, regulation no. 1907/2006. The European Parliament and The Council of The European Union.

  • Richards, S., Liu, Y., Bettencourt, B. R., et al. (2005). Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution. Genome Research, 15, 1–18.

    CAS  PubMed  Google Scholar 

  • Robertson, D. G. (2005). Metabonomics in toxicology: A review. Toxicological Sciences, 85, 809–822.

    CAS  PubMed  Google Scholar 

  • Robertson, D. G., Reily, M. D., Sigler, R. E., Wells, D. F., Paterson, D. A., & Braden, T. K. (2000). Metabonomics: Evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants. Toxicological Sciences, 57, 326–337.

    CAS  PubMed  Google Scholar 

  • Rosania, G. R., Crippen, G., Woolf, P., States, D., & Shedden, K. (2007). A cheminformatic toolkit for mining biomedical knowledge. Pharmaceutical Research, 24, 1791–1802.

    CAS  PubMed  Google Scholar 

  • Ruhland, M., Engelhardt, G., & Pawlizki, K. (2004). Distribution and metabolism of d/l-, l- and d-glufosinate in transgenic, glufosinate tolerant crops of maize (Zea mays L spp mays) and oilseed rape (Brassica napus L. var napus). Pest Management Science, 60, 691–696.

    CAS  PubMed  Google Scholar 

  • Sansone, S.-A., Fan, T., Goodacre, R., et al. (2007). The metabolomics standards initiative. Nature Biotechnology, 25, 846–848.

    CAS  PubMed  Google Scholar 

  • Schellenberger, J., Park, J. O., Conrad, T. C., & Palsson, B. Ø. (2010). BiGG: A biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics, 11, 213.

    PubMed  Google Scholar 

  • Schneider, D. (2000). Using drosophila as a model insect. Nature Reviews, 1, 218–226.

    CAS  PubMed  Google Scholar 

  • Scholz, M., & Fiehn, O. (2007). SetupX-a public study design database for metabolomic projects. Pacific Symposium on Biocomputing, 12, 169–180.

    Google Scholar 

  • Shannon, P., Markiel, A., Ozier, O., et al. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.

    CAS  PubMed  Google Scholar 

  • Shinbo, Y., Nakamura, Y., Altaf-Ul-Amin, M., et al. (2006). KNApSAcK: A comprehensive species-metabolite relationship database. Biotechnology in Agriculture and Forestry, 57, 166–181.

    Google Scholar 

  • Smedsgaard, J., & Nielsen, J. (2005). Metabolite profiling of fungi and yeast: From phenotype to metabolome by MS and informatics. Journal of Experimental Botany, 56, 273–286.

    CAS  PubMed  Google Scholar 

  • Smith, C. A., O’Maille, G., Want, E. J., et al. (2005). METLIN: A metabolite mass spectral database. Therapeutic Drug Monitoring, 27, 747–751.

    CAS  PubMed  Google Scholar 

  • Smith, C. A., Want, E. J., O’Maille, G., Tong, G. C., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787.

    CAS  PubMed  Google Scholar 

  • Soga, T., Ohashi, Y., Ueno, Y., Naraoka, H., Tomita, M., & Nishioka, T. (2003). Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. Journal of Proteome Research, 2, 488–494.

    CAS  PubMed  Google Scholar 

  • Sorrell, T. C., Wright, L. C., Malik, R., & Himmelreich, U. (2006). Application of proton nuclear magnetic resonance spectroscopy to the study of Cryptococcus and cryptococcosis. FEMS Yeast Research, 6, 558–566.

    CAS  PubMed  Google Scholar 

  • Spratlin, J. L., Serkova, N. J., & Eckhardt, S. G. (2009). Clinical applications of metabolomics in oncology: A review. Clinical Cancer Research, 15, 431–440.

    CAS  PubMed  Google Scholar 

  • Suhre, K., & Schmitt-Kopplin, P. (2008). MassTRIX: Mass translator into pathways. Nucleic Acids Research, 36, W481–W484.

    CAS  PubMed  Google Scholar 

  • Sumner, L. W., Amberg, A., Barrett, D., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.

    CAS  Google Scholar 

  • Sun, B., Li, L., Wua, S., et al. (2009). Metabolomic analysis of biofluids from rats treated with Aconitum alkaloids using nuclear magnetic resonance and gas chromatography/time-of-flight mass spectrometry. Analytical Biochemistry, 395, 125–133.

    CAS  PubMed  Google Scholar 

  • Taguchi, R., Nishijima, M., & Shimizu, T. (2007). Basic analytical systems for lipidomics by mass spectrometry in Japan. Methods in Enzymology, 432, 185–211.

    CAS  PubMed  Google Scholar 

  • Takahashi, H., Kai, K., Shinbo, Y., et al. (2008). Metabolomics approach for determining growth-specific metabolites based on Fourier transform ion cyclotron resonance mass spectrometry. Analytical and Bioanalytical Chemistry, 391, 2769–2782.

    CAS  PubMed  Google Scholar 

  • Tan, S., Evans, R., & Singh, B. (2006). Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino Acids, 30, 195–204.

    CAS  PubMed  Google Scholar 

  • Taylor, C. F., Field, D., Sansone, S.-A., et al. (2008). Promoting coherent minimum reporting guidelines for biological and biomedical investigations: The MIBBI project. Nature Biotechnology, 26, 889–896.

    CAS  PubMed  Google Scholar 

  • Taylor, N. S., Weber, R. J. M., Southam, A. D., et al. (2009). A new approach to toxicity testing in Daphnia magna: Application of high throughput FT-ICR mass spectrometry metabolomics. Metabolomics, 5, 44–58.

    CAS  Google Scholar 

  • Thimm, O., Bläsing, O., Gibon, Y., et al. (2004). MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant Journal, 37, 914–939.

    CAS  PubMed  Google Scholar 

  • Thompson, G. D., Dutton, R., & Sparks, T. C. (2000). Spinosad-a case study: An example from a natural products discovery programme. Pest Management Science, 56, 696–702.

    CAS  Google Scholar 

  • Tokimatsu, T., Sakurai, N., Suzuki, H., et al. (2005). KaPPA-View. A web-based analysis tool for integration of transcript and metabolite data on plant metabolic pathway maps. Plant Physiology, 138, 1289–1300.

    CAS  PubMed  Google Scholar 

  • Toyoda, T., & Wada, A. (2004). Omic space: Coordinate-based integration and analysis of genomic phenomic interactions. Bioinformatics, 20, 1759–1765.

    CAS  PubMed  Google Scholar 

  • Trethewey, R. N., Krotzky, A. J., & Willmitzer, L. (1999). Metabolic profiling: A Rosetta stone for genomics? Current Opinion in Plant Biology, 2, 83–85.

    CAS  PubMed  Google Scholar 

  • Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (OPLS). Journal of Chemometrics, 16, 119–128.

    CAS  Google Scholar 

  • van Dam, N. M., & Raaijmakers, C. E. (2006). Local and systemic induced responses to cabbage root fly larvae (Delia radicum) in Brassica nigra and B. oleracea. Chemoecology, 16, 17–24.

    Google Scholar 

  • van Iersel, M. P., Kelder, T., & Pico, A. R. (2008). Presenting and exploring biological pathways with PathVisio. BMC Bioinformatics, 9, 399.

    PubMed  Google Scholar 

  • van Ravenzwaay, B., Cunha, G. C.-P., Leibold, E., et al. (2007). The use of metabolomics for the discovery of new biomarkers of effect. Toxicology Letters, 172, 21–28.

    PubMed  Google Scholar 

  • van Vliet, E., Morath, S., Eskes, C., et al. (2008). A novel in vitro metabolomics approach for neurotoxicity testing, proof of principle for methyl mercury chloride and caffeine. Neurotoxicology, 29, 1–12.

    PubMed  Google Scholar 

  • Vastrik, I., D’Eustachio, P., Schmidt, E., et al. (2007). Reactome: A knowledge base of biologic pathways and processes. Genome Biology, 8, R39.

    PubMed  Google Scholar 

  • Viant, M. R., Bearden, D. W., Bundy, J. G., et al. (2009). International NMR-based environmental metabolomics intercomparison exercise. Environmental Science and Technology, 43, 219–225.

    CAS  PubMed  Google Scholar 

  • Viant, M. R., Ludwig, C., & Günter, U. L. (2008). 1D and 2D NMR spectroscopy: From metabolic fingerprinting to profiling. In W. J. Griffiths (Ed.), Metabolomics, metabonomics and metabolic profiling (pp. 44–70). Cambridge, UK: RSC Publishing.

    Google Scholar 

  • Viant, M. R., Pincetich, C. A., Hinton, D. E., & Tjeerdema, R. S. (2006a). Toxic actions of dinoseb in medaka (Oryzias latipes) embryos as determined by in vivo 31P NMR, HPLC–UV and 1H NMR metabolomics. Aquatic Toxicology, 76, 329–342.

    CAS  PubMed  Google Scholar 

  • Viant, M. R., Pincetich, C. A., & Tjeerdema, R. S. (2006b). Metabolic effects of dinoseb, diazinon and esfenvalerate in eyed eggs and alevins of Chinook salmon (Oncorhynchus tshawytscha) determined by 1H NMR metabolomics. Aquatic Toxicology, 77, 359–371.

    CAS  PubMed  Google Scholar 

  • Villas-Bôas, S. G., Mas, S., Akesson, M., Smedsgaard, J., & Nielsen, J. (2005). Mass spectrometry in metabolome analysis. Mass Spectrometry Reviews, 24, 613–646.

    PubMed  Google Scholar 

  • Vinayavekhin, N., Homan, E. A., & Saghatelian, A. (2010). Exploring disease through metabolomics. ACS Chemical Biology, 5, 91–103.

    CAS  PubMed  Google Scholar 

  • Ward, J. L., Baker, J. M., & Beale, M. H. (2007). Recent applications of NMR spectroscopy in plant metabolomics. FEBS Journal, 274, 1126–1131.

    CAS  PubMed  Google Scholar 

  • Ward, J. L., Baker, J. M., & Miller, S. J. (2010). An inter-laboratory comparison demonstrates that [1H]-NMR metabolite fingerprinting is a robust technique for collaborative plant metabolomic data collection. Metabolomics. doi:10.1007/s11306-010-0200-4.

  • Ward, E., & Bernasconi, P. (1999). Target-based discovery of crop protection chemicals. Nature Biotechnology, 17, 618–619.

    CAS  PubMed  Google Scholar 

  • Warne, M. A., Lenz, E. M., Osborn, D., Weeks, J. M., & Nicholson, J. K. (2000). An NMR-based metabonomic investigation of the toxic effects of 3-trifluoromethyl-aniline on the earthworm Eisenia veneta. Biomarkers, 5, 56–72.

    CAS  Google Scholar 

  • Werner, E., Croixmarie, V., Umbdenstock, T., et al. (2008). Mass spectrometry-based metabolomics: Accelerating the characterization of discriminating signals by combining statistical correlations and ultrahigh resolution. Analytical Chemistry, 80, 4918–4932.

    CAS  PubMed  Google Scholar 

  • Widarto, H. T., van Der Meijden, E., Lefeber, A. W. M., et al. (2006). Metabolomic differentiation of Brassica rapa following herbivory by different insect instars using two-dimensional nuclear magnetic resonance spectroscopy. Journal of Chemical Ecology, 32, 2417–2428.

    CAS  PubMed  Google Scholar 

  • Williams, A. (1997). Chiral pesticides. Pesticide Outlook, 8, 15–19.

    CAS  Google Scholar 

  • Wind, R. A., Hu, J. Z., & Majors, P. D. (2005). Slow-MAS NMR: A new technology for in vivo metabolomic studies. Drug Discovery Today: Technologies, 2, 291–294.

    Google Scholar 

  • Wishart, D. S. (2008). Quantitative metabolomics using NMR. Trends in Analytical Chemistry, 27, 228–237.

    CAS  Google Scholar 

  • Wishart, D. S., Knox, C., & Guo, A. C. (2006). DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research, 34, D668–D672.

    CAS  PubMed  Google Scholar 

  • Wishart, D. S., Tzur, D., Knox, C., et al. (2007). HMDB: The Human Metabolome Database. Nucleic Acids Research, 35, D521–D526.

    CAS  PubMed  Google Scholar 

  • Woo, H. M., Kim, K. M., Choi, M. H., et al. (2009). Mass spectrometry based metabolomic approaches in urinary biomarker study of women’s cancers. Clinica Chimica Acta, 400, 63–69.

    CAS  Google Scholar 

  • Xia, J., Psychogios, N., Young, N., & Wishart, D. S. (2009). MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Research, 37, W652–W660.

    CAS  PubMed  Google Scholar 

  • Yi, Z.-B., Yu, Y., Liang, Y.-Z., & Zeng, B. (2007). Evaluation of the antimicrobial mode of berberine by LC/ESI-MS combined with principal component analysis. Journal of Pharmaceutical and Biomedical Analysis, 44, 301–304.

    CAS  PubMed  Google Scholar 

  • Yu, Y., Yi, Z.-b., & Liang, Y.-Z. (2007). Main antimicrobial components of Tinospora capillipes, and their mode of action against Staphylococcus aureus. FEBS Letter, 581, 4179–4183.

    CAS  Google Scholar 

  • Zhang, P., Foerster, H., Tissier, C. P., et al. (2005). MetaCyc and AraCyc. Metabolic pathway databases for plant research. Plant Physiology, 138, 27–37.

    CAS  PubMed  Google Scholar 

  • Zhou, J., Ma, C., & Xu, H. (2009). Metabolic profiling of transgenic rice with cryIAc and sck genes: An evaluation of unintended effects at metabolic level by using GC–FID and GC–MS. The Journal of Chromatography B, 877, 725–732.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos A. Aliferis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aliferis, K.A., Chrysayi-Tokousbalides, M. Metabolomics in pesticide research and development: review and future perspectives. Metabolomics 7, 35–53 (2011). https://doi.org/10.1007/s11306-010-0231-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-010-0231-x

Keywords

Navigation