Skip to main content
Log in

Metabolic profiling of gender: Headspace-SPME/GC–MS and 1H NMR analysis of urine

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

This study aims to investigate the metabolic difference between male and female healthy adults using a combination of GC–MS and NMR metabolomics techniques. While metabolomics has shown wide applications in characterizing the status and progression of many diseases, physiological factors such as gender often contribute high levels of variability that can hinder the detection of biomarkers of interest, such as in disease detection. We carried out a detailed exploration of gender related metabolic profiling of human urine using a Headspace-SPME/GC–MS approach and detected over two hundred peaks. Fifty-nine metabolites were identified using the NIST library. 1H NMR spectroscopy was also utilized, and resulted in the identification of eighteen metabolites. We find that both GC–MS and NMR are able to capture human gender metabolic differences, and their combination allows a significantly better understanding of this difference. Subtle differences between genders are found to be related to the metabolism of fats, amino acids, and TCA cycle intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • America, A. H., van Geffern, M. H., et al. (2006). Alignment and statistical difference analysis of complex peptide data sets generated by multidimensional LC-MS. Proteomics, 6(2), 641–653.

    Article  PubMed  CAS  Google Scholar 

  • Arthur, C. L., & Pawliszyn, J. (1990). Solid-phase microextraction with thermal-desorption using fused-silica optical fibers. Analytical Chemistry, 62(19), 2145–2148.

    Article  CAS  Google Scholar 

  • Asiago, V. M., Alvarado, L. Z., et al. (2010). Early detection of recurrent breast cancer using metabolite profiling. Cancer Research, 70(21), 8309–8318.

    Article  PubMed  CAS  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57, 289–300.

    Google Scholar 

  • Blaak, E. (2001). Gender differences in fat metabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 4(6), 499–502.

    Article  PubMed  CAS  Google Scholar 

  • Canto, J. G., Shlipak, M. G., et al. (2000). Prevalence, clinical characteristics, and mortality among patients with myocardial infarction presenting without chest pain. JAMA, 283(24), 3223–3229.

    Article  PubMed  CAS  Google Scholar 

  • Chan, E. C. Y., Koh, P. K., et al. (2009). Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). Journal of Proteome Research, 8(1), 352–361.

    Article  PubMed  CAS  Google Scholar 

  • Coen, M., Holmes, E., et al. (2008). NMR-based metabolic profiling and metabonomic approaches to problems in molecular toxicology. Chemical Research in Toxicology, 21(1), 9–27.

    Article  PubMed  CAS  Google Scholar 

  • Dalgaard, P. (2002). Introductory statistics with R. Berlin: Springer-Verlag.

    Google Scholar 

  • Ditscheid, B., Keller, S., et al. (2009). Faecal steroid excretion in humans is affected by calcium supplementation and shows gender-specific differences. European Journal of Nutrition, 48(1), 22–30.

    Article  PubMed  CAS  Google Scholar 

  • Djurendic-Brenesel, M., Mimica-Dukic, N., et al. (2010). Gender-related differences in the pharmacokinetics of opiates. Forensic Science International, 194(1–3), 28–33.

    Article  PubMed  CAS  Google Scholar 

  • Ferraro, R., Lillioja, S., et al. (1992). Lower sedentary metabolic rate in women compared with men. Journal of Clinical Investigation, 90(3), 780–784.

    Article  PubMed  CAS  Google Scholar 

  • Franklin, R. B., Kahng, M. W., et al. (1986). The effect of testosterone on citrate synthesis and citrate oxidation and a proposed mechanism for regulation of net citrate production in prostate. Hormone and Metabolic Research, 18(3), 177–181.

    Article  PubMed  CAS  Google Scholar 

  • Gowda, G. A. N., Zhang, S. C., et al. (2008). Metabolomics-based methods for early disease diagnostics. Expert Review of Molecular Diagnostics, 8(5), 617–633.

    Article  PubMed  CAS  Google Scholar 

  • Gu, H., Pan, Z., et al. (2009) 1H NMR metabolomics study of age profiling in children. NMR in Biomedicine, 22(8), 826–833.

    Google Scholar 

  • Gu, H. W., Chen, H. W., et al. (2007). Monitoring diet effects via biofluids and their implications for metabolomics studies. Analytical Chemistry, 79(1), 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Guillen, N., Acin, S., et al. (2008). Squalene in a sex-dependent manner modulates atherosclerotic lesion which correlates with hepatic fat content in apoE-knockout male mice. Atherosclerosis, 197(1), 72–83.

    Article  PubMed  CAS  Google Scholar 

  • Hines, A., Yeung, W. H., et al. (2007). Comparison of histological, genetic, metabolomics, and lipid-based methods for sex determination in marine mussels. Analytical Biochemistry, 369(2), 175–186.

    Article  PubMed  CAS  Google Scholar 

  • Hodson, M. P., Dear, G. J., et al. (2007). A gender-specific discriminator in Sprague-Dawley rat urine: the deployment of a metabolic profiling strategy for biomarker discovery and identification. Analytical Biochemistry, 362(2), 182–192.

    Article  PubMed  CAS  Google Scholar 

  • Jia, C. R., Luo, Y. Z., et al. (1998). Solid phase microextraction combined with HPLC for determination of metal ions using crown ether as selective extracting reagent. Journal of Microcolumn Separations, 10(2), 167–173.

    Article  CAS  Google Scholar 

  • Jones, A. W. (2007). Age- and gender-related differences in blood amphetamine concentrations in apprehended drivers: lack of association with clinical evidence of impairment. Addiction, 102(7), 1085–1091.

    Article  PubMed  Google Scholar 

  • Jones, A. W., Holmgren, A., et al. (2008). Driving under the influence of cannabis: a 10-year study of age and gender differences in the concentrations of tetrahydrocannabinol in blood. Addiction, 103(3), 452–461.

    Article  PubMed  Google Scholar 

  • Kanehisa, M. (1997). A database for post-genome analysis. Trends in Genetics, 13(9), 375–376.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, A., Gettys, T. W., et al. (1997). The metabolic significance of leptin in humans: Gender-based differences in relationship to adiposity, insulin sensitivity, and energy expenditure. Journal of Clinical Endocrinology and Metabolism, 82(4), 1293–1300.

    Article  PubMed  CAS  Google Scholar 

  • Kochhar, S., Jacobs, D. M., et al. (2006). Probing gender-specific metabolism differences in humans by nuclear magnetic resonance-based metabonomics. Analytical Biochemistry, 352(2), 274–281.

    Article  PubMed  CAS  Google Scholar 

  • Krisko, I., & Walker, J. B. (1966). Influence of sex hormones of amidinotransferase levels. metabolic control of creatine biosynthesis. Acta Endocrinologica, 53(4), 655.

    PubMed  CAS  Google Scholar 

  • Lawton, K. A., Berger, A., et al. (2008). Analysis of the adult human plasma metabolome. Pharmacogenomics, 9(4), 383–397.

    Article  PubMed  CAS  Google Scholar 

  • Lindon, J. C., Holmes, E., et al. (2007). Metabonomics in pharmaceutical R & D. FEBS Journal, 274(5), 1140–1151.

    Article  PubMed  CAS  Google Scholar 

  • Lindon, J. C., Nicholson, J. K., et al. (1999). NMR spectroscopy of biofluids. In G. A. Webb (Ed.), Annual Reports on NMR Spectroscopy (Vol. 38, pp. 1–88). Academic Press: London.

    Google Scholar 

  • Lostroh, A. J. (1968). Regulation by testosterone and insulin of citrate secretion and protein synthesis in explanted mouse prostates. Proceedings of the National Academy of Sciences of the United States of America, 60(4), 1312.

    Article  PubMed  CAS  Google Scholar 

  • Lu, G., Wang, J., et al. (2006). Study on gender difference based on metabolites in urine by ultra high performance liquid chromatography time of flight mass spectrometry. Chinese Journal of Chromatography, 24(2), 109–113.

    Article  PubMed  CAS  Google Scholar 

  • Lu, X., Zhao, X. J., et al. (2008). LC-MS-based metabonomics analysis. Journal of Chromatography B, 866(1–2), 64–76.

    Article  CAS  Google Scholar 

  • Mittendorfer, B., Horowitz, J. F., et al. (2002). Effect of gender on lipid kinetics during endurance exercise of moderate intensity in untrained subjects. Amerian Journal of Physiology, Endocrinology and Metabolism, 283(1), E58–E65.

    CAS  Google Scholar 

  • Mo, H. P., Harwood, J., et al. (2009). R: A quantitative measure of NMR signal receiving efficiency. Journal of Magnetic Resonance, 200(2), 239–244.

    Article  PubMed  CAS  Google Scholar 

  • Pan, Z. Z., & Raftery, D. (2007). Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Analytical and Bioanalytical Chemistry, 387(2), 525–527.

    Article  PubMed  CAS  Google Scholar 

  • Penn, D. J., Oberzaucher, E., et al. (2007). Individual and gender fingerprints in human body odour. Journal of the Royal Society Interface, 4(13), 331–340.

    Article  Google Scholar 

  • Plumb, R., Granger, J., et al. (2003). Metabonomic analysis of mouse urine by liquid-chromatography-time of flight mass spectrometry (LC-TOFMS): detection of strain, diurnal and gender differences. Analyst, 128(7), 819–823.

    Article  PubMed  CAS  Google Scholar 

  • Plumb, R. S., Granger, J. H., et al. (2005). A rapid screening approach to metabonomics using UPLC and oa-TOF mass spectrometry: application to age, gender and diurnal variation in normal/Zucker obese rats and black, white and nude mice. Analyst, 130(6), 844–849.

    Article  PubMed  CAS  Google Scholar 

  • Priego, T., Sánchez, J., Picó, C., & Palou, A. (2008). Sex-differential expression of metabolism-related genes in response to a high-fat diet. Obesity, 16(4), 819–826.

    Article  PubMed  CAS  Google Scholar 

  • Proteggente, A. R., England, T. G., et al. (2002). Gender differences in steady-state levels of oxidative damage to DNA in healthy individuals. Free Radical Research, 36(2), 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Psihogios, N. G., Gazi, I. F., et al. (2008). Gender-related and age-related urinalysis of healthy subjects by NMR-based metabonomics. NMR in Biomedicine, 21(3), 195–207.

    Article  PubMed  CAS  Google Scholar 

  • Rezzi, S., Ramadan, Z., et al. (2007). Nutritional metabonomics: Applications and perspectives. Journal of Proteome Research, 6(2), 513–525.

    Article  PubMed  CAS  Google Scholar 

  • Slupsky, C. M., Rankin, K. N., et al. (2007). Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Analytical Chemistry, 79(18), 6995–7004.

    Article  PubMed  CAS  Google Scholar 

  • Sreekumar, A., Poisson, L. M., et al. (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457(7231), 910–914.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, R. W., Gold, E., et al. (1997). Gender differences in body fat content are present well before puberty. International Journal of Obesity, 21(11), 1082–1084.

    Article  PubMed  CAS  Google Scholar 

  • Teul, J., Ruperez, F. J., et al. (2009). Improving metabolite knowledge in stable atherosclerosis patients by association and correlation of GC-MS and 1H NMR fingerprints. Journal of Proteome Research, 8(12), 5580–5589.

    Article  PubMed  CAS  Google Scholar 

  • Tikunov, Y., Lommen, A., et al. (2005). A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiology, 139(3), 1125–1137.

    Article  PubMed  CAS  Google Scholar 

  • Viant, M. R., Bearden, D. W., et al. (2009). International NMR-based environmental metabolomics intercomparison exercise. Environmental Science and Technology, 43(1), 219–225.

    Article  PubMed  CAS  Google Scholar 

  • Wikoff, W. R., Pendyala, G., et al. (2008). Metabolomic analysis of the cerebrospinal fluid reveals changes in phospholipase expression in the CNS of SIV-infected macaques. Journal of Clinical Investigation, 118(7), 2661–2669.

    Article  PubMed  CAS  Google Scholar 

  • Wishart, D. S., Tzur, D., et al. (2007). HMDB: The human metabolome database. Nucleic Acids Research, 35, D521–D526.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S., Gowda, G. A. N., et al. (2010). Advances in NMR-based biofluid analysis and metabolite profiling. Analyst, 135(7), 1490–1498.

    Google Scholar 

  • Zhang, S. C., Nagana Gowda, G. A., et al. (2008). Correlative and quantitative 1H NMR-based metabolomics reveals specific metabolic pathway disturbances in diabetic rats. Analytical Biochemistry, 383(1), 76–84.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Y. F., & Evans, M. I. (2001). Estrogen modulates the expression of l-arginine:glycine amidinotransferase in chick liver. Molecular and Cellular Biochemistry, 221(1–2), 139–145.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Purdue University. Daniel Raftery is a member of the Purdue Center for Cancer Research and Oncological Sciences Center. The authors thank all the volunteers who contributed their urine samples. Loan of GC–MS instrumentation from the Center for Authentic Science Practice in Education, Discovery Learning Center is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Raftery.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 241 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Liu, L., Steffen, D. et al. Metabolic profiling of gender: Headspace-SPME/GC–MS and 1H NMR analysis of urine. Metabolomics 8, 323–334 (2012). https://doi.org/10.1007/s11306-011-0315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-011-0315-2

Keywords

Navigation