Skip to main content
Log in

Faecal steroid excretion in humans is affected by calcium supplementation and shows gender-specific differences

  • ORIGINAL CONTRIBUTION
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

Previous human studies on the effect of dietary calcium supplementation on faecal excretion of bile acids (BA) and faecal water concentrations of animal neutral sterols (NSt, cholesterol and its metabolites) lack detailed information about single BA and NSt.

Aim of the study

We investigated whether single BA and NSt in faeces and especially in faecal water are affected by calcium supplementation and whether this affects genotoxicity of faecal water. In addition, we differentiated between men and women with regard to the concentrations of BA and NSt in faecal water.

Methods

Thirty-one healthy volunteers consumed a calcium supplemented bread (1.0 g/day) and a placebo bread, respectively, for 4 weeks in a double-blind, randomised cross-over trial. Faeces were collected quantitatively for 5 days in the last week of each period. NSt and BA were analysed by GC–MS.

Results

Due to calcium supplementation faecal concentrations of lithocholic acid (LCA, 14%, P = 0.008), deoxycholic acid (DCA, 19%, P < 0.001) and 12keto-deoxycholic acid (12keto DCA, 29%, P = 0.049) significantly increased whereas BA concentrations in faecal water were only marginally affected. In contrast, concentrations of cholesterol (30%, P = 0.020) and its metabolites coprostanol (43%, P = 0.004), coprostanone (36%, P = 0.003), cholestanol (44%, P = 0.001) and cholestenone (32%, P = 0.038) in faecal water significantly decreased. Total NSt concentration in faecal water was found to be significantly higher in women compared to men (P = 0.018). The genotoxicity of faecal water was neither affected by calcium supplementation nor were there gender-specific differences.

Conclusions

Dietary calcium supplementation diversely affects BA and NSt in faeces and in faecal water but does not influence the genotoxicity of faecal water in healthy adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Block JB, Dietrich MF, Jawaid S, Gilgomez K, Morrison L, Rucker P (1987) Inhibition of fecapentaene-12 and carcinogen induced mutagenesis in the Ames test by carageenans and calcium. Proc Am Assoc Cancer Res 28:103

    Google Scholar 

  2. Burger HG (2002) Androgen production in women. Fertil Steril 77(Suppl 4):S3–S5

    Article  Google Scholar 

  3. Chiang JYL (2003) Bile acid regulation of hepatic physiology: III. Bile acids and nuclear receptors. Am J Physiol Gastroint Liver Physiol 284:349–356

    Google Scholar 

  4. De Kok TMCM, van Faassen A, Glinghammer B, Pachen DMFA, Eng M, Rafter JJ, Baeten CGMI, Engels LGJB, Kleinjans JCS (1999) Bile acid concentrations, cytotoxicity, and pH of faecal water from patients with colorectal adenomas. Dig Dis Sci 44:2218–2225

    Article  Google Scholar 

  5. De Kok TMCM, Vaniersel MLPS, Tenhoor F, Kleinjans JCS (1993) In vitro study on the effects of faecal composition on fecapentaene kinetics in the large bowel. Mutation Res 302:103–108

    Article  Google Scholar 

  6. Ditscheid B, Keller S, Jahreis G (2005) Cholesterol metabolism is affected by calcium phosphate supplementation in humans. J Nutr 135:1678–1682

    CAS  Google Scholar 

  7. Dorgan JF, Fears TR, McMahon RP, Aronson Friedman L, Patterson BH, Greenhut SF (2002) Measurement of steroid sex hormones in serum: a comparison of radioimmunoassay and mass spectrometry. Steroids 67:151–158

    Article  CAS  Google Scholar 

  8. dos Santos Silva I, Swerdlow AJ (1993) Sex differences in the risks of hormone-dependent cancers. Am J Epidemiol 138:10–28

    CAS  Google Scholar 

  9. Geltner Allinger U, Johansson GK, Gustafsson JÅ, Rafter J (1989) Shift from a mixed to a lactovegetarian diet: influence on acidic lipids in faecal water—a potential risk factor for colon cancer. Am J Clin Nutr 50:992–996

    Google Scholar 

  10. Glinghammar B, Inoue H, Rafter JJ (2002) Deoxycholic acid causes DNA damage in colonic cells with subsequent induction of caspases, COX-2 promoter activity and the transcription factors NF-kB and AP-1. Carcinogenesis 23:839–845

    Article  CAS  Google Scholar 

  11. Glinghammar B, Venturi M, Rowland IR, Rafter JJ (1997) Shift from a dairy product-rich to a dairy product-free diet: influence on cytotoxicity and genotoxicity of faecal water–potential risk markers for colon cancer. Am J Clin Nutr 66:1277–1282

    CAS  Google Scholar 

  12. Govers MJAP, Termont DSML, Lapré JA, Kleibeuker JH, Vonk RJ, van der Meer R (1996) Calcium in milk products precipitates intestinal fatty acids and secondary bile acids and thus inhibits colonic cytotoxicity in humans. Cancer Res 56:3270–3275

    CAS  Google Scholar 

  13. Govers MJAP, Termont DSML, van Aken GA, van der Meer R (1994) Characterization of the adsorption of conjugated and unconjugated bile acids to insoluble, amorphous calcium phosphate. J Lipid Res 35:741–748

    CAS  Google Scholar 

  14. Hayashi E, Amuro Y, Endo T, Yamamoto H, Miyamoto M, Kishimoto S (1986) Fecal bile acids and neutral sterols in rats with spontaneous colon cancer. Int J Cancer 37:629–632

    Article  CAS  Google Scholar 

  15. Hofmann AF (1999) The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med 159:2647–2658

    Article  CAS  Google Scholar 

  16. Hylla S, Gostner A, Dusel G, Anger H, Bartram HP, Christl SU, Kasper H, Scheppach W (1998) Effects of resistant starch on the colon in healthy volunteers: possible implications for cancer prevention. Am J Clin Nutr 67:136–142

    CAS  Google Scholar 

  17. Keller S, Jahreis G (2004) Determination of underivatised sterols and bile acid trimethyl silyl ether methyl esters by gas chromatography-mass spectrometry-single ion monitoring in faeces. J Chromatogr B 813:199–207

    Article  CAS  Google Scholar 

  18. Korpela JT, Adlercreutz H, Turunen MJ (1988) Fecal free and conjugated bile acids and neutral sterols in vegetarians, omnivores, and patients with colorectal cancer. Scand J Gastroenterol 23:277–283

    Article  CAS  Google Scholar 

  19. Lampe JW, Fredstrom SB, Slavin JL, Potter JD (1993) Sex-differences in colonic function—a randomized trial. Gut 34:531–536

    Article  CAS  Google Scholar 

  20. Lapré JA, deVries HT, Termont DSML, Kleibeuker JH, deVries EGE, van der Meer R (1993) Mechanism of the protective effect of supplemental dietary calcium on cytolytic activity of faecal water. Cancer Res 53:248–253

    Google Scholar 

  21. Lupton JR, Steinbach G, Chang WC, O’Brien BC, Wiese S, Stoltzfus CL, Glober GA, Wargovich MJ, McPherson RS, Winn RJ (1996) Calcium supplementation modifies the relative amounts of bile acids in bile and affects key aspects of human colon physiology. J Nutr 126:1421–1428

    CAS  Google Scholar 

  22. McMichael AJ, Potter JD (1983) Do intrinsic sex differences in lower alimentary tract physiology influence the sex-specific risks of bowel cancer and other biliary and intestinal diseases? Am J Epidemiol 118:620–627

    CAS  Google Scholar 

  23. Midtvedt T, Lingaas E, Carlstedt-Duke B, Höverstad T, Midtvedt AC, Saxerholt H, Steinbakk M, Norin KE (1990) Intestinal microbial conversion of cholesterol to coprostanol in man. APMIS 98:839–844

    Article  CAS  Google Scholar 

  24. Nagengast FM, Grubben MJAL, van Munster IP (1995) Role of bile acids in colorectal carcinogenesis. Eur J Cancer 31A:1067–1070

    Article  CAS  Google Scholar 

  25. Nair PP (1988) Role of bile acids and neutral sterols in carcinogenesis. Am J Clin Nutr 48:768–774

    CAS  Google Scholar 

  26. Nordling MM, Glinghammar B, Karlsson PC, de Kok TMCM, Rafter JJ (2003) Effects of cell proliferation, activator protein-1 and genotoxicity by faecal water from patients with colorectal adenomas. Scand J Gastroenterol 38:549–555

    Article  CAS  Google Scholar 

  27. Osswald K, Becker TW, Grimm M, Jahreis G, Pool-Zobel BL (2000) Inter- and intra-individual variation of faecal water–genotoxicity in human colon cells. Mutation Res 472:59–70

    CAS  Google Scholar 

  28. Powolny A, Xu J, Loo G (2001) Deoxycholate induces DNA damage and apoptosis in human colon epithelial cells expressing either mutant or wild-type p53. Int J Biochem Cell Biol 33:193–203

    Article  CAS  Google Scholar 

  29. Price JF, Lee AJ, Fowkes FGR (1997) Steroid sex hormones and peripheral arterial disease in the Edinburgh Artery Study. Steroids 62:789–794

    Article  CAS  Google Scholar 

  30. Rafter JJ, Child P, Anderson AM, Alder R, Eng V, Bruce WR (1987) Cellular toxicity of faecal water depends on diet. Am J Clin Nutr 45:559–563

    CAS  Google Scholar 

  31. Ren D, Li L, Schwabacher AW, Young JW, Beitz DC (1996) Mechanism of cholesterol reduction to coprostanol by Eubacterium coprostanoligenes ATCC 51222. Steroids 61:33–34

    Article  CAS  Google Scholar 

  32. Rieger MA, Parlesak A, Pool-Zobel BL, Rechkemmer G, Bode C (1999) A diet high in fat and meat but low in dietary fibre increases the genotoxic potential of ‘faecal water’. Carcinogenesis 20:2311–2316

    Article  CAS  Google Scholar 

  33. Roberton AM (1993) Roles of endogenous substances and bacteria in colorectal cancer. Mutation Res 290:71–78

    CAS  Google Scholar 

  34. Roy P, Owen RW, Faivre J, Scheppach W, Saldanha MH, Beckly DE, Boutron MC (1999) Faecal neutral sterols and bile acids in patients with adenomas and large bowel cancer: an EPC case-control study. European cancer prevention. Eur J Cancer Prev 8:409–415

    Article  CAS  Google Scholar 

  35. Stadler J, Stern HS, Yeung KS, McGuire V, Furrer R, Marcon N, Bruce WR (1988) Effect of high fat consumption on cell proliferation activity of colorectal mucosa and on soluble faecal bile acids. Gut 29:1326–1331

    Article  CAS  Google Scholar 

  36. Stadler J, Yeung KS, Furrer R, Marcon N, Himal HS, Bruce WR (1988) Proliferative activity of rectal mucosa and soluble faecal bile acids in patients with normal colons and in patients with colonic polyps or cancer. Cancer Lett 38:315–320

    Article  CAS  Google Scholar 

  37. Suzuki K, Bruce RW, Baptista J, Furrer R, Vaughan DJ, Krepinsky JJ (1986) Characterization of cytotoxic steroids in human faeces and their putative role in the etiology of human colonic cancer. Cancer Lett 33:307–316

    Article  CAS  Google Scholar 

  38. Ten Bruggencate SJM, Bovee-Oudenhoven IMJ, Lettink-Wissink MLG, Katan MB, Van der Meer R (2004) Dietary fructo-oligosaccharides and inulin decrease resistance of rats to salmonella: protective role of calcium. Gut 53:530–535

    Article  CAS  Google Scholar 

  39. Termine JD, Posner AS (1970) Calcium phosphate formation in vitro. I. Factors affecting initial phase separation. Arch Biochem Biophys 140:307–317

    Article  CAS  Google Scholar 

  40. Van der Meer R, de Vries HT (1985) Differential binding of glycine- and taurine-conjugated bile acids to insoluble calcium phosphate. Biochem J 229:265–268

    Google Scholar 

  41. Van der Meer R, Lapré JA, Govers MJAP, Kleibeuker JH (1997) Mechanisms of the intestinal effects of dietary fats and milk products on colon carcinogenesis. Cancer Lett 114:75–83

    Article  Google Scholar 

  42. Van der Meer R, Welberg JWM, Kuipers F, Kleibeuker JH, Mulder NH, Termont DSML, Vonk RJ, de Vries HT, de Vries EGE (1990) Effect of supplemental dietary calcium on the intestinal association of calcium, phosphate and bile acids. Gastroenterol 99:1653–1659

    Google Scholar 

  43. Van Faassen A, Hazen MJ, van den Brandt PA, van den Bogaard AE, Hermus RJJ, Janknegt RA (1993) Bile acids and pH values in total faeces and in faecal water from habitually omnivorous and vegetarian subjects. Am J Clin Nutr 58:917–922

    Google Scholar 

  44. Van Gorkom BAP, van der Meer R, Boersma-van Ek W, Termont DSML, de Vries EGE, Kleibeuker JH (2002) Changes in bile acid composition and effect on cytolytic activity of faecal water by ursodeoxycholic acid administration: a placebo-controlled cross-over intervention trial in healthy volunteers. Scand J Gastroenterol 37:965–971

    Article  Google Scholar 

  45. Van Munster IP, Tangerman A, Nagengast FM (1994) Effect of resistant starch on colonic fermentation, bile acid metabolism, and mucosal proliferation. Dig Dis Sci 39:834–842

    Article  Google Scholar 

  46. Venturi M, Hambly RJ, Glinghammar B, Rafter JJ, Rowland IR (1997) Genotoxic activity in human faecal water and the role of bile acids: a study using the alkaline comet assay. Carcinogenesis 18:2353–2359

    Article  CAS  Google Scholar 

  47. Weisburger JH, Reddy BS, Barnes WS, Wynder EL (1983) Bile acids, but not neutral sterols, are tumor promoters in the colon in man and in rodents. Environ Health Persp 50:101–107

    Article  CAS  Google Scholar 

  48. Weststrate JA, Ayesh R, Bauer-Plank C, Drewitt PN (1999) Safety evaluation of phytosterol esters. Part 4. Faecal concentrations of bile acids and neutral sterols in healthy normolipidaemic volunteers consuming a controlled diet either with or without a phytosterol ester-enriched margarine. Food Chem Toxicol 37:1063–1071

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Jahreis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ditscheid, B., Keller, S. & Jahreis, G. Faecal steroid excretion in humans is affected by calcium supplementation and shows gender-specific differences. Eur J Nutr 48, 22–30 (2009). https://doi.org/10.1007/s00394-008-0755-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-008-0755-2

Keywords

Navigation