Skip to main content

LC-MS-Based Population Metabolomics: A Mini-Review of Recent Studies and Challenges from Sample Collection to Data Processing

  • Chapter
  • First Online:
Clinical Metabolomics Applications in Genetic Diseases
  • 305 Accesses

Abstract

Metabolomics aims to identify and quantify metabolites in biological samples to understand better biological changes resulting from lifestyle, environment, or disease. This is challenging due to the structural diversity of the metabolites and the complexity of samples of interest, such as blood and urine, useful in population studies to study biological changes in large cohorts. The limited number of commercially available standards and incomplete metabolite spectral databases impedes the identification of many metabolites. Furthermore, the need for more standardization in sample preparation, analysis, and interpretation of data is an important issue that can influence results in large cohort studies. Variations or errors occurring during the pre-analytical stage can highly affect levels of metabolites. In this mini-review, we outline the challenges associated with population metabolomic studies and show an overview of current practices in the field with some case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APCI:

Atmospheric pressure chemical ionization

ASQ:

Age and stage questionnaire

BMI:

Body mass index

CI:

Chemical ionization

COMETS:

COnsortium of METabolomic Studies

CV:

Coefficient of variation

DNA:

Deoxyribonucleic acid

EDIH:

Empirical dietary index of hyperinsulinemia

EDTA:

Ethylenediaminetetraacetic acid

EI:

Electron ionization (electron impact)

ESI:

Electrospray ionization

FDR:

False discovery rate

GC-MS:

Gas chromatography-mass spectrometry

HDL:

High-density lipoprotein

HMDB:

Human metabolome database

IS:

Internal standard

LC-MS:

Liquid chromatography-mass spectrometry

LOD:

Limit of detection

LTR:

Long-term reference

MALDI:

Matrix-assisted laser desorption/ionization

MAR:

Missing at random

MCAR:

Missing completely at random

MNAR:

Missing not at random

MS:

Mass spectrometry

NIST:

National Institute of Standards and Technology

NMR:

Nuclear magnetic resonance

OPLS-DA:

Orthogonal partial least-squares discriminant analysis

PBS:

Phosphate-buffered saline

PCA:

Principal component analysis

QA:

Quality assurance

QC:

Quality control

QqQ:

Triple quadrupole

QqTOF:

Quadrupole time of flight

QRILC:

Quantile regression imputation of left-censored data

RNA:

Ribonucleic acid

ROC:

Receiver operating characteristic curve

SRM:

Standard reference material

VLDL:

Very-low-density lipoprotein

WGCNA:

Weighted gene co-expression network analysis

References

  1. Vailati-Riboni M, Palombo V, Loor JJ. What are omics sciences? In: Periparturient diseases of dairy cows; 2017. p. 1–7.

    Google Scholar 

  2. Aderemi AV, et al. Metabolomics: a scoping review of its role as a tool for disease biomarker discovery in selected non-communicable diseases. Meta. 2021;11(7):418.

    CAS  Google Scholar 

  3. Gika HG, et al. Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics. J Pharm Biomed Anal. 2014;87:12–25.

    Article  CAS  PubMed  Google Scholar 

  4. Playdon MC, et al. Metabolomics analytics workflow for epidemiological research: perspectives from the consortium of metabolomics studies (COMETS). Meta. 2019;9(7):145.

    CAS  Google Scholar 

  5. Cui L, Lu H, Lee YH. Challenges and emergent solutions for LC-MS/MS-based untargeted metabolomics in diseases. Mass Spectrom Rev. 2018;37(6):772–92.

    Article  CAS  PubMed  Google Scholar 

  6. Villas-Boas SG, et al. Mass spectrometry in metabolome analysis. Mass Spectrom Rev. 2005;24(5):613–46.

    Article  CAS  PubMed  Google Scholar 

  7. Kirwan JA, et al. Preanalytical processing and biobanking procedures of biological samples for metabolomics research: a white paper, community perspective (for “precision medicine and pharmacometabolomics task group”-the metabolomics society initiative). Clin Chem. 2018;64(8):1158–82.

    Article  CAS  PubMed  Google Scholar 

  8. Bouatra S, et al. The human urine metabolome. PLoS One. 2013;8(9):e73076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Psychogios N, et al. The human serum metabolome. PLoS One. 2011;6(2):e16957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen Y, et al. Methods used to increase the comprehensive coverage of urinary and plasma metabolomes by MS. Bioanalysis. 2016;8(9):981–97.

    Article  CAS  PubMed  Google Scholar 

  11. Lippi G, et al. Preanalytical variability: the dark side of the moon in laboratory testing. Clin Chem Lab Med. 2006;44(4):358–65.

    Article  CAS  PubMed  Google Scholar 

  12. Szecsi PB, Odum L. Error tracking in a clinical biochemistry laboratory. Clin Chem Lab Med. 2009;47(10):1253–7.

    Article  CAS  PubMed  Google Scholar 

  13. Stevens VL, et al. Pre-analytical factors that affect metabolite stability in human urine, plasma, and serum: a review. Metabolites. 2019;9(8):156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Denery JR, Nunes AA, Dickerson TJ. Characterization of differences between blood sample matrices in untargeted metabolomics. Anal Chem. 2011;83(3):1040–7.

    Article  CAS  PubMed  Google Scholar 

  15. Wu J, Gao Y. Physiological conditions can be reflected in human urine proteome and metabolome. Expert Rev Proteomics. 2015;12(6):623–36.

    Article  CAS  PubMed  Google Scholar 

  16. Bernini P, et al. Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. J Biomol NMR. 2011;49(3–4):231–43.

    Article  CAS  PubMed  Google Scholar 

  17. Wu Y, Li L. Sample normalization methods in quantitative metabolomics. J Chromatogr A. 2016;1430:80–95.

    Article  CAS  PubMed  Google Scholar 

  18. Evans AM, et al. Dissemination and analysis of the quality assurance (QA) and quality control (QC) practices of LC-MS based untargeted metabolomics practitioners. Metabolomics. 2020;16(10):113.

    Article  CAS  PubMed  Google Scholar 

  19. Long NP, et al. Toward a standardized strategy of clinical metabolomics for the advancement of precision medicine. Meta. 2020;10(2):51.

    Google Scholar 

  20. Beger RD, et al. Towards quality assurance and quality control in untargeted metabolomics studies. Metabolomics. 2019;15(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Blazenovic I, et al. Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Meta. 2018;8(2):31.

    Google Scholar 

  22. Spicer R, et al. Navigating freely-available software tools for metabolomics analysis. Metabolomics. 2017;13(9):106.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vinaixa M, et al. Mass spectral databases for LC/MS- and GC/MS-based metabolomics: state of the field and future prospects. TrAC Trends Anal Chem. 2016;78:23–35.

    Article  CAS  Google Scholar 

  24. Misra BB. New software tools, databases, and resources in metabolomics: updates from 2020. Metabolomics. 2021;17(5):49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wishart DS, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018;46(D1):D608–17.

    Article  CAS  PubMed  Google Scholar 

  26. Kind T, et al. Identification of small molecules using accurate mass MS/MS search. Mass Spectrom Rev. 2018;37(4):513–32.

    Article  CAS  PubMed  Google Scholar 

  27. Cajka T, Fiehn O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal Chem. 2016;88(1):524–45.

    Article  CAS  PubMed  Google Scholar 

  28. Tautenhahn R, et al. XCMS online: a web-based platform to process untargeted metabolomic data. Anal Chem. 2012;84(11):5035–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pluskal T, et al. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010;11(1):1–11.

    Article  Google Scholar 

  30. Tsugawa H, et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12(6):523–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gurdeniz G, et al. The effect of LC-MS data preprocessing methods on the selection of plasma biomarkers in fed vs. fasted rats. Metabolites. 2012;2(1):77–99.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chen Y, et al. Assessment of data pre-processing methods for LC-MS/MS-based metabolomics of uterine cervix cancer. Analyst. 2013;138(9):2669–77.

    Article  CAS  PubMed  Google Scholar 

  33. Hohrenk LL, et al. Comparison of software tools for liquid chromatography-high-resolution mass spectrometry data processing in nontarget screening of environmental samples. Anal Chem. 2020;92(2):1898–907.

    Article  CAS  PubMed  Google Scholar 

  34. Coble JB, Fraga CG. Comparative evaluation of preprocessing freeware on chromatography/mass spectrometry data for signature discovery. J Chromatogr A. 2014;1358:155–64.

    Article  CAS  PubMed  Google Scholar 

  35. Thevenot EA, et al. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J Proteome Res. 2015;14(8):3322–35.

    Article  CAS  PubMed  Google Scholar 

  36. Lawton KA, et al. Analysis of the adult human plasma metabolome. Pharmacogenomics. 2008;9(4):383–97.

    Article  CAS  PubMed  Google Scholar 

  37. Perng W, et al. Urate and nonanoate mark the relationship between sugar-sweetened beverage intake and blood pressure in adolescent girls: a metabolomics analysis in the ELEMENT cohort. Meta. 2019;9(5):100.

    CAS  Google Scholar 

  38. Tabung FK, et al. Identifying metabolomic profiles of Insulinemic dietary patterns. Meta. 2019;9(6):120.

    CAS  Google Scholar 

  39. Ose J, et al. Multiplatform urinary metabolomics profiling to discriminate cachectic from non-cachectic colorectal cancer patients: pilot results from the ColoCare study. Meta. 2019;9(9):178.

    CAS  Google Scholar 

  40. Taylor K, et al. Differences in pregnancy metabolic profiles and their determinants between white European and South Asian women: findings from the born in Bradford cohort. Meta. 2019;9(9):190.

    CAS  Google Scholar 

  41. Santos Ferreira DL, et al. Associations between blood metabolic profile at 7 years old and eating disorders in adolescence: findings from the Avon longitudinal study of parents and children. Meta. 2019;9(9):191.

    Google Scholar 

  42. Ellul S, et al. Metabolomics: population epidemiology and concordance in Australian children aged 11-12 years and their parents. BMJ Open. 2019;9(Suppl 3):106–17.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Karpievitch YV, Dabney AR, Smith RD. Normalization and missing value imputation for label-free LC-MS analysis. BMC Bioinform. 2012;13(16):1–9.

    Google Scholar 

  44. Lazar C, et al. Accounting for the multiple natures of missing values in label-free quantitative proteomics data sets to compare imputation strategies. J Proteome Res. 2016;15(4):1116–25.

    Article  CAS  PubMed  Google Scholar 

  45. Wei R, et al. Missing value imputation approach for mass spectrometry-based metabolomics data. Sci Rep. 2018;8(1):663.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Antonelli J, et al. Statistical workflow for feature selection in human metabolomics data. Meta. 2019;9(7):143.

    CAS  Google Scholar 

  47. Andrade C. Multiple testing and protection against a type 1 (false positive) error using the Bonferroni and Hochberg corrections. Indian J Psychol Med. 2019;41(1):99–100.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pang Z, et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49(W1):W388–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xia J, et al. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009;37(Web Server issue):W652–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oliver SG, et al. Systematic functional analysis of the yeast genome. Trends Biotechnol. 1998;16(9):373–8.

    Article  CAS  PubMed  Google Scholar 

  51. Bendinelli B, et al. Prediagnostic circulating metabolites in female breast cancer cases with low and high mammographic breast density. Sci Rep. 2021;11(1):13025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Qi J, et al. Metabolomics and cancer preventive behaviors in the BC generations project. Sci Rep. 2021;11(1):12094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Larkin JR, et al. Metabolomic biomarkers in blood samples identify cancers in a mixed population of patients with nonspecific symptoms. Clin Cancer Res. 2022;28:1651.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li L, et al. Metabolomics-based discovery of molecular signatures for triple negative breast cancer in Asian female population. Sci Rep. 2020;10(1):370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Seow WJ, et al. Association of untargeted urinary metabolomics and lung cancer risk among never-smoking women in China. JAMA Netw Open. 2019;2(9):e1911970.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kelly RS, et al. Metabolomics and communication skills development in children; evidence from the ages and stages questionnaire. Meta. 2019;9(3):42.

    CAS  Google Scholar 

  57. Titan SM, et al. Metabolomics biomarkers and the risk of overall mortality and ESRD in CKD: results from the Progredir cohort. PLoS One. 2019;14(3):e0213764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bot M, et al. Metabolomics profile in depression: a pooled analysis of 230 metabolic markers in 5283 cases with depression and 10,145 controls. Biol Psychiatry. 2020;87(5):409–18.

    Article  CAS  PubMed  Google Scholar 

  59. Wang J, et al. Discovery of potential biomarkers for osteoporosis using LC-MS/MS metabolomic methods. Osteoporos Int. 2019;30(7):1491–9.

    Article  CAS  PubMed  Google Scholar 

  60. Surowiec I, et al. Metabolomic and lipidomic assessment of the metabolic syndrome in Dutch middle-aged individuals reveals novel biological signatures separating health and disease. Metabolomics. 2019;15(2):23.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Al Rashid K, et al. Association of the functional ovarian reserve with serum metabolomic profiling by nuclear magnetic resonance spectroscopy: a cross-sectional study of ~ 400 women. BMC Med. 2020;18(1):247.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hellmuth C, et al. An individual participant data meta-analysis on metabolomics profiles for obesity and insulin resistance in European children. Sci Rep. 2019;9(1):5053.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wang Y, et al. Identification and reproducibility of plasma metabolomic biomarkers of habitual food intake in a US diet validation study. Meta. 2020;10(10):382.

    CAS  Google Scholar 

  64. Wang Y, et al. Identification and reproducibility of urinary Metabolomic biomarkers of habitual food intake in a cross-sectional analysis of the cancer prevention Study-3 diet assessment sub-study. Meta. 2021;11(4):1.

    Google Scholar 

  65. Darst BF, et al. Longitudinal plasma metabolomics of aging and sex. Aging (Albany NY). 2019;11(4):1262.

    Article  CAS  PubMed  Google Scholar 

  66. Lau CE, et al. Determinants of the urinary and serum metabolome in children from six European populations. BMC Med. 2018;16(1):202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brachem C, et al, Oluwagbemigun K. Associations of BMI and body fat with urine metabolome in adolescents are sex-specific: a cross-sectional study. Metabolites. 2020;10(8).

    Google Scholar 

  68. McClain KM, et al. Body composition and metabolomics in the Alberta physical activity and breast cancer prevention trial. J Nutr. 2022;152(2):419–28.

    Google Scholar 

  69. Zanetti KA. The future of metabolomic profiling in population-based research: opportunities and challenges. J Anal Bioanal Tech. 2014;5(4):2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lekha Sleno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mireault, M., Sleno, L. (2023). LC-MS-Based Population Metabolomics: A Mini-Review of Recent Studies and Challenges from Sample Collection to Data Processing. In: Abdel Rahman, A.M. (eds) Clinical Metabolomics Applications in Genetic Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-99-5162-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5162-8_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5161-1

  • Online ISBN: 978-981-99-5162-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics