Skip to main content
Log in

A multiplexed set of microsatellite markers for discriminating Acacia mangium, A. auriculiformis, and their hybrid

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

In order to assist breeding and gene pool conservation in tropical Acacias, we aimed to develop a set of multipurpose SSR markers for use in both Acacia mangium and A. auriculiformis. A total of 51 SSR markers (developed in A. mangium and natural A. mangium x A. auriculiformis hybrid) were tested. A final set of 16 well-performing SSR markers were identified, six of which were species diagnostic. The markers were optimized for assay in four multiplex mixes and used to genotype range-wide samples of A. mangium, A. auriculiformis, and putative F1 hybrids. Simulation analysis was used to investigate the power of the markers for identifying the pure species and their F1, F2, and backcross hybrids. The six species diagnostic markers were particularly powerful for detecting F1 hybrids from pure species but could also discriminate the pure species from F2 and backcross progenies in most cases (97 %). STRUCTURE analysis using all 16 markers was likewise able to distinguish these cross types and pure species sets. Both sets of markers had difficulties in distinguishing F2 and backcross progenies. However, identifying F1 from pure species is the current primary concern in countries where these species are planted. The SSR marker set also has direct application in DNA profiling (probability of identity = 4.1 × 10−13), breeding system analysis, and population genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adamski DJ, Dudley NS, Morden CW, Borthakur D (2013) Cross-amplification of nonnative Acacia species in the Hawaiian Islands using microsatellite markers from Acacia koa. Plant Biosyst 147:1088–1091. doi:10.1080/11263504.2012.749958

    Article  Google Scholar 

  • Adhikari P, Chen LL, Chen X, Sapkota SD, Hwang CF (2014) Interspecific hybrid identification of Vitis aestivalis-derived ‘Norton’-based populations using microsatellite markers. Sci Hortic 179:363–366. doi:10.1016/j.scienta.2014.09.048

    Article  CAS  Google Scholar 

  • Aggarwal RK et al (2011) Permanent genetic resources added to molecular ecology resources database 1 August 2010–30 September 2010. Mol Ecol Resour 11:219–222. doi:10.1111/j.1755-0998.2010.02944.x

    Article  CAS  PubMed  Google Scholar 

  • Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barilani M, Bernard-Laurent A, Mucci N, Tabarroni C, Kark S, Perez Garrido JA, Randi E (2007) Hybridisation with introduced chukars (Alectoris chukar) threatens the gene pool integrity of native rock (A. graeca) and red-legged (A. rufa) partridge populations. Biol Conserv 137:57–69. doi:10.1016/j.biocon.2007.01.014

    Article  Google Scholar 

  • Bellemain E, Taberlet P (2004) Improved noninvasive genotyping method: Application to brown bear (Ursus arctos) faeces. Mol Ecol Notes 4:519–522. doi:10.1111/j.1471-8286.2004.00711.x

    Article  CAS  Google Scholar 

  • Benbouza H, Jacquemin JM, Baudoin JP, Mergeai G (2006) Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels. Biotechnol Agron Soc 10:77–81

    CAS  Google Scholar 

  • Burgarella C et al (2009) Detection of hybrids in nature: application to oaks (Quercus suber and Q-ilex). Heredity 102:442–452. doi:10.1038/hdy.2009.8

    Article  CAS  PubMed  Google Scholar 

  • Butcher PA, Decroocq S, Gray Y, Moran GF (2000) Development, inheritance and cross-species amplification of microsatellite markers from Acacia mangium. Theor Appl Genet 101:1282-1290. doi:10.1007/s001220051608

  • Butcher PA, Harwood CE, Quang TH (2004) Studies of mating systems in seed stands suggest possible causes of variable outcrossing rates in natural populations of Acacia mangium. For Genet 11:303–309

    CAS  Google Scholar 

  • Butcher PA, Moran GF (2000) Genetic linkage mapping in Acacia mangium. 2. Development of an integrated map from two outbred pedigrees using RFLP and microsatellite loci. Theor Appl Genet 101:594–605

    Article  CAS  Google Scholar 

  • Costa V et al. (2012) Microsatellite markers for identification and parentage analysis in the European wild boar (Sus scrofa). BMC Research Notes 5. doi:10.1186/1756-0500-5-479

  • Cullingham CI, Cooke JEK, Dang S, Coltman DW (2013) A species-diagnostic SNP panel for discriminating lodgepole pine, jack pine, and their interspecific hybrids. Tree Genet Genomes 9:1119–1127. doi:10.1007/s11295-013-0608-x

    Article  Google Scholar 

  • David RG, Tai TH, Clay HS (2002) Identification of red rice, rice, and hybrid populations using microsatellite markers. Weed Sci 50:333–339

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Faria DA, Mamani EMC, Pappas MR, Pappas GJ, Grattapaglia D (2010) A selected set of EST-derived microsatellites, polymorphic and transferable across 6 species of eucalyptus. J Hered 101:512–520. doi:10.1093/jhered/esq024

    Article  CAS  PubMed  Google Scholar 

  • Grattapaglia D et al (2012) Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genet Genomes 8:463–508. doi:10.1007/s11295-012-0491-x

    Article  Google Scholar 

  • Griffin AR et al (2015) Breeding polyploid varieties of tropical acacias: progress and prospects. South For 77(1):41–50. doi:10.2989/20702620.2014.999303

    Google Scholar 

  • Griffin AR, Midgley SJ, Bush D, Cunningham PJ, Rinaudo AT (2011) Global uses of Australian acacias—recent trends and future prospects. Diver Distrib 17:837–847. doi:10.1111/j.1472-4642.2011.00814.x

    Article  Google Scholar 

  • Gunn B, McDonald M, Gardiner C (1989) 1998 Seed collections of tropical acacias in Papua New Guinea and North Queensland. Australian Tree Seed Centre, CSIRO Division of Foretry and Forest Product, Canberra

    Google Scholar 

  • Harwood CE, Hardiyanto EB, Yong WC (2015) Genetic improvement of tropical acacias: achievements and challenges. South For 77(1):11–18. doi:10.2989/20702620.2014.999302

    Google Scholar 

  • Hasenkamp N, Ziegenhagen B, Mengel C, Liepelt S, Schulze L, Schmitt HP (2011) Towards a DNA marker assisted seed source identification: a pilot study in European beech (Fagus sylvatica L.). Eur J For Res 130:513–519. doi:10.1007/s10342-010-0439-3

    Article  Google Scholar 

  • Kato K, Yamaguchi S, Hanaoka S, Chigira O (2014) Comparative study of reciprocal crossing for establishment of acacia hybrids. J Trop For Sci 26:469–483

    Google Scholar 

  • Kha LD (2001) Studies on the use of natural hybrids between A.mangium and A. auriculiformis in Vietnam. Agriculture Publishing House, Hanoi

    Google Scholar 

  • Kha LD, Hai ND, Vinh HQ (1997) Clonal tests and propagation options for natural hybrids between Acacia mangium and A. auriculiformis. Recent Developments in Acacia Planting, ACIAR proceedings 82:203–210

  • Khosravi R, Kaboli M, Rezaei HR (2013) Detecting hybridization between iranian wild wolf (Canis Lupus Pallipes) and free-ranging domestic dog (Canis Familiaris) by analysis of microsatellite markers. Zool Sci 30:27–34. doi:10.2108/zsj.30.27

    Article  PubMed  Google Scholar 

  • Kirst M, Cordeiro CM, Rezende GDSP, Grattapaglia D (2005) Power of microsatellite markers for fingerprinting and parentage analysis in Eucalyptus grandis. Breed Popul J Hered 96:161–166. doi:10.1093/jhered/esi023

    Article  CAS  Google Scholar 

  • Larcombe MJ, Vaillancourt RE, Jones RC, Potts BM (2014) Assessing a Bayesian Approach for Detecting Exotic Hybrids between Plantation and Native Eucalypts. International Journal of Forestry Research 2014:13 pages. doi:10.1155/2014/650202

  • Ma YP, Tian XL, Wu ZK, Sun WB, Zhang JL (2014) Evidence for natural hybridization between Primula beesiana and P. bulleyana, two heterostylous primroses in NW Yunnan, China. J Syst Evol 52:500–507. doi:10.1111/jse.12077

    Article  Google Scholar 

  • Maslin BR, Miller JT, Seigler DS (2003) Overview of the generic status of Acacia (Leguminosae : Mimosoideae). Aust Syst Bot 16:1–18. doi:10.1071/sb02008

    Article  Google Scholar 

  • Maslin BR, Stirton CH (1997) Generic and infrageneric classification in Acacia (Leguminosae: Mimosoideae): a list of critical species on which to build a comparative data set. Bull Int Group Study Mimosoideae 20:22–44

    Google Scholar 

  • Millar MA, Nuberg I, Byrne M, Sedgley M (2008) High outcrossing and random pollen dispersal in a planted stand of Acacia saligna subsp. saligna revealed by paternity analysis using microsatellites. Tree Genet Genomes 4:367–377. doi:10.1007/s11295-007-0115-z

    Article  Google Scholar 

  • Nambiar EKS, Harwood CE (2014) Productivity of acacia and eucalypt plantations in Southeast Asia. 1. Bio-physical determinants of production: opportunities and challenges. Int For Rev 16:225–248

    Google Scholar 

  • Nambiar EKS, Harwood CE, Kien ND (2014) Acacia plantations in Vietnam: research and knowledge application to secure a sustainable future. South For 77(1):1–10. doi:10.2989/20702620.2014.999301

    Google Scholar 

  • Neale D, Devey M, Jermstad K, Ahuja M, Alosi M, Marshall K (1992) Use of DNA markers in forest tree improvement research. New For 6:391

    Article  Google Scholar 

  • Nevill P, Reed A, Bossinger G, Vaillancourt RE, Larcombe M, Ades PK (2008) Cross-species amplification of Eucalyptus microsatellite loci. Mol Ecol Resour 8:1277–1280

    Article  CAS  PubMed  Google Scholar 

  • Ng CH, Koh SC, Lee SL, Ng KKS, Mark A, Norwati M, Wickneswari R (2005) Isolation of 15 polymorphic microsatellite loci in Acacia hybrid (Acacia mangium × Acacia auriculiformis). Mol Ecol Notes 5:572–575. doi:10.1111/j.1471-8286.2005.00994.x

    Article  CAS  Google Scholar 

  • Nghiem QC, Harbard JL, Griffin AR, Koutoulis A, Harwood CE, Ha TH (2013) Pollen-pistil interactions between autotetraploid and diploid Acacia mangium and diploid A. auriculiformis. J Trop For Sci 25:96–110

    Google Scholar 

  • Nielsen EE, Bach LA, Kotlicki P (2006) HYBRIDLAB (version 1.0): a program for generating simulated hybrids from population samples. Mol Ecol Notes 6:971–973. doi:10.1111/j.1471-8286.2006.01433.x

    Article  Google Scholar 

  • Nurtjahjaningsih ILG, Saito Y, Tsuda Y, Ide Y (2007) Genetic diversity of parental and offspring populations in a Pinus merkusii seedling seed orchard detected by microsatellite markers. Bull Tokyo Univ For 118:1–14

    Google Scholar 

  • Peakall R, Smouse PE (2012) GenALEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. doi:10.1093/bioinformatics/bts460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porth I, El-Kassaby YA (2014) Assessment of the genetic diversity in forest tree populations using molecular markers. Diversity 6:283–295

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Randi E (2008) Detecting hybridization between wild species and their domesticated relatives. Mol Ecol 17:285–293. doi:10.1111/j.1365-294X.2007.03417.x

    Article  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106. doi:10.1111/j.1471-8286.2007.01931.x

    Article  PubMed  Google Scholar 

  • Rufelds CV (1998) Acacia mangium, A. auriculiformis and hybrid A. auriculiformis seedling morphology study. FRC Publication Number, vol 41. Forest Research Center, Sandakan, Malaysia, pp 83

  • Schlotterer C (2004) The evolution of molecular markers—just a matter of fashion? Nat Rev Genet 5:63–69

    Article  PubMed  Google Scholar 

  • Sedgley M, Harbard J, Smith RMM, Wickneswari R, Griffin AR (1992) Reproductive biology and interspecific hybridisation of Acacia mangium and Acacia auriculiformis A. Cunn. ex Benth. (Leguminosae: Mimosoideae). Aust J Bot 40:37–48

    Article  Google Scholar 

  • Sukganah A, Choong CY, Wickneswari R, Russell J, Neale D (2013) Nucleotide sequence analysis of two lignin genes in Acacia auriculiformis × Acacia mangium hybrid for enhancement of wood pulp quality. Tree Genet Genomes 9:1369–1381. doi:10.1007/s11295-013-0640-x

    Article  Google Scholar 

  • Vaha JP, Primmer CR (2006) Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci .Mol Ecol 15:63-72. doi:10.1111/j.1365-294X.2005.02773.x

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  Google Scholar 

  • Vanden Broeck A, Storme V, Cottrell JE, Boerjan W, Van Bockstaele E, Quataert P, Van Slycken J (2004) Gene flow between cultivated poplars and native black poplar (Populus nigra L.): a case study along the river Meuse on the Dutch–Belgian border. For Ecol Manag 197:307–310. doi:10.1016/j.foreco.2004.05.021

    Article  Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256. doi:10.1046/j.1365-294X.2001.01185.x

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Hu M (1996) Interspecies hybridization between Acacia mangium and A. auriculiformis identified by RAPD markers. Taiwan J For Sci 11:401–407

    CAS  Google Scholar 

  • White TL, Adams WT, Neale DB (2007) Forest genetics. CABI Publishing, Cambridge

    Book  Google Scholar 

  • Wickneswari R (1989) Use of isozyme analysis in a proposed Acacia mangium X Acacia auriculiformis hybrid seed production orchard. J Trop For Sci 2:157–164

    Google Scholar 

  • Wickneswari R, Norwati M (1992) Pod production and hybrid seed yeld of Acacia mangium and Acacia auriculiformis. In: Carron LT, Aken KM (eds) Breeding technologies for tropical acacias. ACIAR Proceedings Series, No. 37, Sabah, pp 57–62

    Google Scholar 

  • Widyatmoko AY, Shiraishi S (2003) Species-specific RAPD markers for identification of Acacia mangium, A. auriculiformis and their hybrid. Kyushu J For Res 56:66–68

    Google Scholar 

  • Wong Melissa ML, Cannon Charles H, Wickneswari R (2012) Development of high-throughput SNP-based genotyping in Acacia auriculiformis x A. mangium hybrids using short-read transcriptome data. BMC Genomics 13:726

  • Yong SYC, Choong CY, Cheong PL, Pang SL, Nor Amalina R, Harikrishna JA, Mat-Isa MN, Hedley P, Milne L, Vaillancourt RE, Wickneswari R (2011) Analysis of ESTs generated from inner bark tissue of an Acacia auriculiformis x Acacia mangium hybrid. Tree Genet Genomes 7:143–152. doi:10.1007/s11295-010-0321-y

    Article  Google Scholar 

  • Yuskianti V, Isoda K (2012) Genetic diversity of Acacia mangium seed orchard in Wonogiri Indonesia using microsatellite markers. HAYATI J Biosci 19:141

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Australian Centre for International Agriculture Research (ACIAR) and the Ministry of Agriculture and Rural Development (Vietnam). We acknowledge the provision of DNA extracts by Mandy Maid and Suguna Apparow from Plant Genetics Laboratory (UKM). We would like to thank Dr. Nghiem Quynh Chi (Vietnamese Academy of Forest Sciences—VAFS) for supplying control pollinated hybrid seeds, Dr. Siju Senan (UKM) for helping in experimental design, Mr. David Bush (Australian Tree Seed Centre) for supplying information on natural population locations, Peter Harrison (PhD candidate—University of Tasmania) for helping in map design, and Mr. Do Son and Mr. Phan Quyen (VAFS) who helped in sample collection.

Data archiving statement

All individual genotype data relating to this study will be available at: http://eprints.utas.edu.au/ (accession number will be supplied later).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Son Le.

Additional information

Communicated by W. Ratnam

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Supplementary Table 1 List of wild populations of A. mangium and A. auriculiformis used in this study (seeds improted from ATSC). Supplementary Table 2 List of control crossed samples used for validating markers (2 samples/combination) (Am = A. mangium, Aa = A. auriculiformis). Supplementary Table 3 Primer sequences of 40 published microsatellite loci. Supplementary Table 4 Mixes of 16 markers used in second stage of genotyping. Supplementary Figure 1 Summary of simulations for K = 1 to 10 from STRUCTURE for Evanno approach for wild population of A. auriculiformis, A. mangium and their putative hybrids. (DOC 211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, S., Ratnam, W., Harwood, C.E. et al. A multiplexed set of microsatellite markers for discriminating Acacia mangium, A. auriculiformis, and their hybrid. Tree Genetics & Genomes 12, 31 (2016). https://doi.org/10.1007/s11295-016-0990-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-016-0990-2

Keywords

Navigation