Skip to main content
Log in

Use of DNA markers in forest tree improvement research

  • Review paper
  • DNA as a biochemical marker
  • Published:
New Forests Aims and scope Submit manuscript

Abstract

DNA markers are rapidly being developed for forest trees. The most important markers are restriction fragment length polymorphisms (RFLPs), polymerase chain reaction- (PCR) based markers such as random amplified polymorphic DNA (RAPD), and fingerprinting markers. DNA markers can supplement isozyme markers for monitoring tree improvement activities such as; estimating genetic diversity in breeding populations, germplasm identification, verifying controlled crosses, and estimating seed orchard efficiencies. Because the number of DNA markers is potentially limitless, it should be possible to map individual quantitative trait loci (QTL) by linkage analysis with high-density maps. Finally, if such associations can be found, it may also be possible to design marker-assisted breeding strategies for forest trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, W. T. 1981a. Applying isozyme analyses in tree-breeding programs. pp. 60–64. In: Conkle, M. T. (Technical Coordinator) Proc. Symp. Isozymes North Am. Forest Trees and Forest Insects. USDA Forest Serv., Pacific SW Forest and Range Exp. Sta., Berkeley, California, Gen. Tech. Rep. PSW-48.

    Google Scholar 

  • Adams, W. T. 1981b. Population genetics and gene conservation in pacific northwest conifers. pp. 401–415. Scudder, G. G. E. and Reveal, J. L. (Eds), Evolution Today, Proceedings of the Second International Congress of Systematic and Evolutionary Biology.

  • Adams, W. T. 1983. Application of isozymes in tree breeding. pp. 381–400. In: Tanksley, S. D. and Orton, T. J. (Eds), Isozymes in Plant Genetics and Breeding, Part A. Elsevier Science Publishers B. V. Amsterdam.

    Google Scholar 

  • Adams, W. T. and Joly, R. J. 1980. Genetics of allozyme variants in loblolly pine. J. Hered. 71: 33–40.

    Google Scholar 

  • Adams, W. T., Neale, D. B., Doerksen, A. H. and Smith, D. B. 1990. Inheritance and linkage of isozyme variants from seed and vegetative bud tissues in coastal Douglas-fir [Pseudotsuga menzieii var. menziesii (Mirb) Franco]. Silvae Genet. 39: 153–167.

    Google Scholar 

  • Adams, W. T., Neale, D. B. and Loopstra, C. A. 1988. Verifying controlled crosses in conifer tree-improvement programs. Silvae Genet. 37: 147–152.

    Google Scholar 

  • Beckmann, J. S., and Soller, M. 1983. Restriction fragment length polymorphisms in genetic improvement: methodologies, mapping and costs. Theor. Appl. Genet. 67: 35–43.

    Google Scholar 

  • Beckmann, J. S., and Soller, M. 1986a. Restriction fragment length polymorphisms and genetic improvement of agricultural species. Euphytica 35: 111–124.

    Google Scholar 

  • Beckmann, J. S., and Soller, M. 1986b. Restriction fragment length polymorphisms in plant genetic improvement. Oxford Surv. Plant Mol. Cell Biol. 3:196–249.

    Google Scholar 

  • Botstein, D., White, R. L., Skolnick, M., and Davis, R. W. 1980. Construction of genetic linkage map in man using restiction fragment length polymorphisms. Am. J. Hum. Genet. 32: 641–656.

    Google Scholar 

  • Cheliak, W. M. and Rogers, D. L. 1990. Integrating biotechnology into tree improvement programs. Can. J. For. Res. 20: 452–463.

    Google Scholar 

  • Cheliak, W. M., Yeh, F. C. H. and Pitel, J. A. 1987. Use of electrophoresis in tree improvement programs. For. Chron. 63: 89–96.

    Google Scholar 

  • Conkle, M. T. 1981. Isozyme variation and linkage in six conifer species. pp. 11–17. In: Conkle, M. T. (Technical Coordinator), Proc. Symp. Isozymes North Am. Forest Trees and Forest Insects. USDA Forest Serv., Pacific SW Forest and Range Exp. Sta., Berkeley, California, Gen. Tech. Rep. PSW-48.

    Google Scholar 

  • Dallas, John F. 1988. Detection of DNA “fingerprints” of cultivated rice by hybridization with a human minisatellite DNA probe. Proc. Natl. Acad. Sci. USA. 85: 6831–6835.

    Google Scholar 

  • Devey, M. E., Jermstad, K. D., Tauer, C. G. and Neale, D. B. 1991. Inheritance of RFLP loci in a loblolly pine three-generation pedigree. Theor. Appl. Genet. 83: 238–242.

    Google Scholar 

  • El-Kassaby, Y. A., Yeh, F. C. and Sziklai, O. 1986. Clonal and seedling seed orchards: A comparison of outcrossing rates and heterozygosity in coastal Douglas-fir using allozyme markers. pp. 410–421. In: Hatcher, A. V. and Weir, R. J. (Eds). IUFRO Conference Proc., A Joint Meeting of Working Parties-S2.04.02, S2.04.03., and 52.03.03. Williamsburg, Virginia.

  • Erickson, V. J. and Adams, W. T. 1989. Mating success in a coastal Douglas-fir seed orchard as affected by distance and floral phenology. Can. J. For. Res. 19: 1248–1255.

    Google Scholar 

  • Friedman, S. T. and Adams, W. T. 1985. Estimation of gene flow into two seed orchards of loblolly pine (Pinus taeda L.). Theoret. Appl. Genet. 69: 609–615.

    Google Scholar 

  • Friedman, S. T. and Neale, D. B. 1992. Biochemical and molecular markers. In: Bramlett, D. (Ed), Pollen Management Handbook, Vol. II. SE Exp. Sta., Ashville, North Carolina, in press.

    Google Scholar 

  • Gianfranceschi, L., Taramino, G., Binelli, G., Pe, M. E. and Ottaviano, E. 1991. RFLP markers in the genetic analysis of forest trees. In Effects of Pollution on the Structure of Forest Tree Populations, Consiglio Nazionale delle Ricerche, pp. 67–78.

  • Guries R. P., Friedman, S. T. and Ledig, F. T. 1978. A megagametophyte analysis of genetic linkage in pitch pine (Pinus rigida Mill.). Heredity 40:309–314.

    Google Scholar 

  • Harry, D. H., Kinlaw, C. S. and Serderoff, R. R. 1988. The anaerobic stress response and its use for studying gene expression in conifers. pp. 275–290. In: Hanover, J. W. and Keathely, D. E. (Eds), Genetic Manipulation of Woody Plants. Plenum Publishing Corporation, New York.

    Google Scholar 

  • Jeffreys, A. J., Wilson, V. and Thein, S. L. 1985. Individual-specific “fingerprints” of human DNA. Nature 316: 76–79.

    Google Scholar 

  • Joly, R. J. and Adams, W. T. 1983. Allozyme analysis of pitch x loblolly pine hybrids produced by supplemental mass-pollination. Forest Sci. 29: 423–432.

    Google Scholar 

  • Lander, E. S. and Botstein, D. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.

    Google Scholar 

  • Landry, B. S. and Michelmore, R. W. 1987. Methods and applications of restriction fragment length polymorphism analysis to plants. In: Tailoring genes for crop improvement: an agricultural perspective. Ed. by: G. Bruening, J. Harada, and A. Hollaender. Plenum Press, New York. pp. 25–44.

    Google Scholar 

  • Litt, M. and Luty, J. A. 1989. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44: 397–401.

    Google Scholar 

  • Magnussen, S. and Yeatman, C. W. 1987. Four years' height growth of 25 jack pine (Pinus banksiana Lamb.) families in an accelerated nursery trial. pp. 47–64. In: Proc. 30th Northeastern For. Tree Improv. Conf., Orono, Maine.

  • McKinley, C. R. and Lowe, W. J. 1986. Juvenile-mature correlations. pp. 11–16. In: Proc. Workshop on Advanced Generation Breeding: Current Status and Research Needs. Baton Rouge, Louisiana. South. Coop. Series Bull. No. 309.

  • Miller, R. G., Conkle, M. T. and Friedman, S. T. 1989. The Forest Service laboratory for genetic analyses of trees. Three Planters' Notes 40: 25–29.

    Google Scholar 

  • Nance, W. L. and Nelson, C. D. 1989. Restriction fragment length polymorphisms and their use in marker assisted selection in Southern pine improvement. pp. 50–59. In: Proceedings 20th Southern Forest Tree Improvement Conference. Charleston, South Carolina. The National Technical Information Service, Springfield, Virginia.

    Google Scholar 

  • Neale, D. B., Tauer, C. G., Gorzo, D. M., and Jermstad, K. D. 1989. Restriction fragment length polymorphism mapping of loblolly pine: Methods, applications, and limitations. pp. 363–372. In: Proc. 20th Southern Forest Tree Imp. Conf., Charleston, South Carolina. The National Technical Information Service, Springfield, Virginia.

    Google Scholar 

  • Neale, D. B. and Williams, C. G. 1991. Restriction fragment length polymorphism mapping in conifers and applications to forest genetics and tree improvement. Can. J. For. Res. 21: 545–554.

    Google Scholar 

  • Nybom, H., Schaal, B. A. and Rogstad, S. H. 1989. DNA “fingerprints” can distinguish cultivars of blackberries and raspberries. Acta Horticulturae 262: 305–310.

    Google Scholar 

  • Nybom, H. 1990. Genetic variation in ornamental apple trees and their seedlings (Malus, Rosaceae) revealed by DNA “fingerprinting” with the M13 repeat probe. Hereditas 113: 17–28.

    Google Scholar 

  • Nybom, H. and Schaal, B. A. 1990a. DNA “fingerprints” applied to paternity analysis in apples (Males x domestica). Theor. Appl. Genet. 79: 763–768.

    Google Scholar 

  • Nybom, H. and Schaal, B. A. 1990b. DNA “fingerprints” reveal genotypic distributions in natural populations of blackberries and raspberries (rubus, rosaceae). Amer. J. Bot. 77: 883–888.

    Google Scholar 

  • Nybom, H., Rogstad, S. H. and Schaal, B. A. 1990. Genetic variation detected by use of the M13 “DNA fingerprint” probe in Malus, Prunus, and Rubus (Rosaceae). Theor. Appl. Genet. 79: 153–156.

    Google Scholar 

  • Omi, S. K. and Adams, W. T. 1985. Variation in seed set and proportions of outcrossed progeny with clones, crown position, and top pruning in a Douglas-fir seed orchard. Can. J. For. Res. 16: 502–507.

    Google Scholar 

  • Paterson A. H., Lander, E. S., Hewitt, J. D., Paterson, S., Lincoln, S. E. and Tanksley, S. D. 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335: 721–726.

    Google Scholar 

  • Rogstad, S. H., Patton, J. C. and Schaal, B. A. 1988a. A human minisatellite probe reveals RFLPs among individuals of two angiosperms. Nucl. Acids Res. 16: 11378.

    Google Scholar 

  • Rogstad, S. H., Patton, J. C. and Schaal, B. A. 1988b. M13 repeat probe detects DNA minisatellite-like sequences in gymnosperms and angiosperms. Proc. Natl. Aca. Sci. USA, 85: 9176–9178.

    Google Scholar 

  • Ryskov, A. P., Jincharadze, A. G., Prosnyak, M. I., Ivanov, P. L. and Limborska, S. A. 1988. M13 phage DNA as a universal marker for DNA finger printing of animals, plants and microorganisms. FEBS LTRS 233: 388–392.

    Google Scholar 

  • Sakai, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A. and Arnheim, N. 1985. Enzymatic amplification of B-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350–1354.

    Google Scholar 

  • Smith, D. B. and Adams, W. T. 1983. Measuring pollen contamination in clonal seed orchards with the aid of genetic markers. pp. 69–77. In: Proc. 17th South. Conf. on Forest Tree Improv.

  • Soller, M. and Beckmann, J. S. 1983. Genetic polymorphism in varietal identification and genetic improvement. Theor. Appl. Genet. 67: 25–33.

    Google Scholar 

  • Tanksley, S. D., Young, N. D., Paterson, A. H. and Bonierbale, M. W. 1989. RFLP mapping in plant breeding: new tools for an old science. BioTechnology, 7: 257–264.

    Google Scholar 

  • Tautz, D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl. Acids Res. 17: 6463–6471.

    Google Scholar 

  • Vassart, G., Georges, M., Monsieur, R., Brocos, H., Geguaere, A. S. and Christophe, D. 1987. A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science 235: 683–684.

    Google Scholar 

  • Wagner, D. B. 1992. Nuclear, chloroplast, and mitochondrial DNA polymorphisms as biochemical markers in population genetic analyses of forest trees. New Forests 6: 373–390.

    Google Scholar 

  • Waxler, M. S. and van Buijtenen, J. P. 1981. Early genetic evaluation of loblolly pine. Can. J. For. Res. 11: 351–355.

    Google Scholar 

  • Weber, J. L. and May, P. E. 1991. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44: 388–396.

    Google Scholar 

  • Weising, K., Beyermann, B., Ramser, J. and Kahl, G. 1991. Plant DNA fingerprinting with radioactive and digoxigenated oligonucleotide probes complementary to simple repetitive DNA sequences. Electrophoresis 12: 159–169.

    Google Scholar 

  • Welsh, J. and McClelland, M. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucl. Acids Res. 18: 7213–7218.

    Google Scholar 

  • Wheeler, N. C. and Jech, K. S. 1986. Estimating supplemental mass pollination (SMP) success electrophoretically. pp. 111–120. In: Proceedings Canadian Tree Improvement Association. Quebec City, Canada.

  • Wheeler, N. C. and Jech, K. S. 1992. The use of electrophoretic markers in seed orchard research. New Forests 6: 311–328.

    Google Scholar 

  • Williams, C. G. 1986. Early genetic testing for loblolly pine growth traits. Ph. D. dissertation, North Carolina State University, Raleigh.

    Google Scholar 

  • Williams, C. G. 1987. Influence of shoot ontogeny on juvenile-mature correlations in loblolly pine. For. Sci. 33: 411–422.

    Google Scholar 

  • Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. and Tingey, S. V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18: 6531–6535.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neale, D.B., Devey, M.E., Jermstad, K.D. et al. Use of DNA markers in forest tree improvement research. New Forest 6, 391–407 (1992). https://doi.org/10.1007/BF00120654

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120654

Key words

Navigation