Skip to main content
Log in

A novel genetic map of pomegranate based on transcript markers enriched with QTLs for fruit quality traits

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

A novel genetic map of pomegranate (Punica granatum L.) enriched with quantitative trait loci (QTLs) for seven traits was constructed using an F2 population. The population was generated from a cross between two varieties of P. granatum: “Nana” and “Black.” Phenotyping of 76 F2 plants was conducted over two seasons. The map includes 1092 SNP markers which were newly developed from de novo transcriptome assembly and a comparison of the sequences of the two varieties or accessions. The map covers 1141 centimorgans (cM) with an average of 1.17 cM between markers over 11 linkage groups. Twenty-five QTLs were identified for fruit traits and plant size. The map includes QTLs for total soluble solids (TSS), fruit weight and perimeter, seed hardness, aril color and weight, and plant height. In an effort to explore the potential of the Agricultural Research Organization (ARO) pomegranate germplasm collection to associate traits with gene markers, an association study was conducted using a set of 346 SNPs described in an earlier study. Of these SNPs, 233 were mapped on the genetic map and found to be distributed in the different linkage groups (LGs). The associated traits were anchored to the map by these common markers. The F2 population described here and the corresponding genetic map provide a useful resource for further genomics and genetic studies of pomegranate, as well as a reservoir of markers for fruit improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Basaki T, Choukan R, Nekouei SMK, Mardi M, Majidi E, Faraji S, Zeinolabedini M (2011) Association analysis for morphological traits in pomegranate (Punica geranatum L.) using microsatellite markers. Middle-East J Sci Res 9:410–417

    CAS  Google Scholar 

  • Basaki T, Nejat MA, Nejad RJ, Faraji S, Keykhaei F (2013) Identification of simple sequences repeat (SSR) informative markers associated with important traits in pomegranate (Punica granatum L.). Int J Agron Plant Prod 4:575–583

    Google Scholar 

  • Ben-Simhon Z, Judeinstein S, Nadler-Hassar T, Trainin T, Bar-Ya’akov I, Borochov-Neori H, Holland D (2011) A pomegranate (Punica granatum L.) WD40-repeat gene is a functional homologue of Arabidopsis TTG1 and is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development. Planta 234:865–881

    Article  CAS  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw HD, Stettler RF (1995) Molecular genetics of growth and development in populus. IV. Mapping QTLs with large effects on growth, form, and phenology traits in a forest tree. Genetics 139:963–973

    CAS  PubMed  Google Scholar 

  • Causse M, Saliba-Colombani V, Lecomte L, Duffe P, Rousselle P, Buret M (2002) QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot 53:2089–2098

    Article  CAS  PubMed  Google Scholar 

  • Chai HS, Therneau TM, Bailey KR, Kocher JP (2010) Spatial normalization improves the quality of genotype calling for Affymetrix SNP 6.0 arrays. BMC Bioinforma 11:356

    Article  Google Scholar 

  • Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Muller WE, Wetter T, Suhai S (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 14:1147–1159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B Biol Sci 363:557–572

    Article  CAS  Google Scholar 

  • Currò S, Caruso M, Distefano G, Gentile A, La Malfa S (2010) New microsatellite loci for pomegranate, Punica granatum (Lythraceae). Am J Bot 97:e58–e60

    Article  PubMed  Google Scholar 

  • Danin-Poleg Y, Tadmor Y, Tzuri G, Reis N, Hirschberg J, Katzir N (2002) Construction of a genetic map of melon with molecular markers and horticultural traits, and localization of genes associated with ZYMV resistance. Euphytica 125:373–384

    Article  CAS  Google Scholar 

  • Di Guardo M, Tadiello A, Farneti B, Lorenz G, Masuero D, Vrhovsek U, Costa G, Velasco R, Costa F (2013) A multidisciplinary approach providing new insight into fruit flesh browning physiology in apple (Malus x domestica Borkh.). PLoS One 8:e78004

    Article  PubMed Central  PubMed  Google Scholar 

  • Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98:18–31

    Article  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    Article  CAS  PubMed  Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930

    Article  PubMed  Google Scholar 

  • Ferrara G, Giancaspro A, Mazzeo A, Giove SL, Matarrese AMS, Pacucci C, Punzi R, Trani A, Gambacorta G, Blanco A, Gadaleta A (2014) Characterization of pomegranate (Punica granatum L.) genotypes collected in Puglia region, Southeastern Italy. Sci Hortic 178:70–78

    Article  Google Scholar 

  • Graham IA, Besser K, Blumer S, Branigan CA, Czechowski T, Elias L, Guterman I, Harvey D, Isaac PG, Khan AM, Larson TR, Li Y, Pawson T, Penfield T, Rae AM, Rathbone DA, Reid S, Ross J, Smallwood MF, Segura V, Townsend T, Vyas D, Winzer T, Bowles D (2010) The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science 327:328–331

    Article  CAS  PubMed  Google Scholar 

  • Hajiahmadi Z, Talebi M, Sayed-Tabatabaei BE (2013) Studying genetic variability of pomegranate (Punica granatum L.) based on chloroplast DNA and barcode genes. Mol Biotechnol

  • Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S, Cohen S, Dai N, Yeselson L, Meir A, Libhaber SE, Avisar E, Melame T, van Koert P, Verbakel H, Hofstede R, Volpin H, Oliver M, Fougedoire A, Stalh C, Fauve J, Copes B, Fei Z, Giovannoni J, Ori N, Lewinsohn E, Sherman A, Burger J, Tadmor Y, Schaffer AA, Katzir N (2010) A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theor Appl Genet 121:511–533

    Article  CAS  PubMed  Google Scholar 

  • Hasnaoui N, Buonamici A, Sebastiani F, Mars M, Trifi M, Vendramin G (2010) Development and characterization of SSR markers for pomegranate (Punica granatum L.) using an enriched library. Conserv Genet Resour 2:283–285

    Article  Google Scholar 

  • Hasnaoui N, Buonamici A, Sebastiani F, Mars M, Zhang D, Vendramin GG (2012) Molecular genetic diversity of Punica granatum L. (pomegranate) as revealed by microsatellite DNA markers (SSR). Gene 493:105–112

    Article  CAS  PubMed  Google Scholar 

  • Holland D, Bar-Ya’akov I (2014) Pomegranate: aspects concerning dynamics of health beneficial phytochemicals and therapeutic properties with respect to the tree cultivar and the environment. In: Yaniv Z, Dudai N (eds) Medicinal and aromatic plants of the Middle-East. Springer, Netherlands, pp 225–239

    Google Scholar 

  • Holland D, Hatib K, Bar-Ya’akov I (2009) Pomegranate: botany, horticulture, breeding. Hortic Rev 35:127–191

    Google Scholar 

  • Jian Z-H, Liu X-S, Hu J-B, Chen Y-H, Feng J-C (2012) Mining microsatellite markers from public expressed sequence tag sequences for genetic diversity analysis in pomegranate. J Genet 91:353–358

    Article  PubMed  Google Scholar 

  • Lee M, Sharopova N, Beavis W, Grant D, Katt M, Blair D, Hallauer A (2002) Expanding the genetic map of maize with the intermated B73 × Mo17 (IBM) population. Plant Mol Biol 48:453–461

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Di X, Yang G, Matsuzaki H, Huang J, Mei R, Ryder TB, Webster TA, Dong S, Liu G, Jones KW, Kennedy GC, Kulp D (2003) Algorithms for large-scale genotyping microarrays. Bioinformatics 19:2397–2403

    Article  CAS  PubMed  Google Scholar 

  • Mascher M, Stein N (2014) Genetic anchoring of whole-genome shotgun assemblies. Front Genet 5

  • Masoud S, Khandan M, Nasre-Esfahani S (2005) Cytogenetical study of some Iranian pomegranate (Punica granatum L.) cultivars. Caryologia 58:132–139

    Article  Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Rosas MO, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740

    Article  CAS  PubMed  Google Scholar 

  • Noormohammadi Z, Fasihee A, Homaee-Rashidpoor S, Sheidai M, Baraki SG, Mazooji A, Tabatabaee-Ardakani SZ (2012) Genetic variation among Iranian pomegranates (Punica granatum L.) using RAPD, ISSR and SSR markers. Aust J Crop Sci 6:268–275

    CAS  Google Scholar 

  • Olukolu BA, Trainin T, Fan SH, Kole C, Bielenberg DG, Reighard GL, Abbott AG, Holland D (2009) Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.). Genome 52:819–828

    Article  CAS  PubMed  Google Scholar 

  • Ophir R, Sherman A, Rubinstein M, Eshed R, Sharabi Schwager M, Harel-Beja R, Bar-Ya’akov I, Holland D (2014) Single-nucleotide polymorphism markers from de-novo assembly of the pomegranate transcriptome reveal germplasm genetic diversity. PLoS One 9:e88998

    Article  PubMed Central  PubMed  Google Scholar 

  • Orhan E, Ercisli S, Esitken A, Sengul M (2014) Molecular and morphological characterization of pomegranate (Punica granatum L.) genotypes sampled from Coruh Valley in Turkey. Genet Mol Res 13:6375–6382

    Article  CAS  PubMed  Google Scholar 

  • Paran I, Goldman I, Tanksley SD, Zamir D (1995) Recombinant inbred lines for genetic mapping in tomato. Theor Appl Genet 90:542–548

    Article  CAS  PubMed  Google Scholar 

  • Pirseyedi SM, Valizadehghan S, Mardi M, Ghaffari MR, Mahmoodi P, Zahravi M, Zeinalabedini M, Nekoui SMK (2010) Isolation and characterization of novel microsatellite markers in pomegranate (Punica granatum L.). Int J Mol Sci 11:2010–2016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Report 15:8–15

    Article  CAS  Google Scholar 

  • Rubinstein M, Katzenellenbogen M, Eshed R, Rozen A, Katzir N, Colle M, Yang L, Grumet R, Weng Y, Sherman A, Ophir R (2015) Ultra high-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single nucleotide polymorphism genotyping array. PloS one In press

  • Sajer O, Scorza R, Dardick C, Zhebentyayeva T, Abbott AG, Horn R (2012) Development of sequence-tagged site markers linked to the pillar growth type in peach (Prunus persica). Plant Breed 131:186–192

    Article  CAS  Google Scholar 

  • Sarkhosh A, Zamani Z, Fatahi R, Hassani M, Wiedow C, Buck E, Gardiner S (2011) Genetic diversity of Iranian soft-seed pomegranate genotypes as revealed by fluorescent-AFLP markers. Physiol Mol Biol Plants 17:305–311

    Article  PubMed Central  PubMed  Google Scholar 

  • Seeram NP, Schulman RN, Heber D (2006) Pomegranates: ancient roots to modern medicine. CRC Press Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Singh SK, Meghwal PR, Pathak R, Gautam R, Kumar S (2013) Genetic diversity in Punica granatum revealed by nuclear rRNA, internal transcribed spacer and RAPD polymorphism. Natl Acad Sci Lett 36:115–124

    Article  CAS  Google Scholar 

  • Singh N, Abburi V, Ramajayam D, Kumar R, Chandra R, Sharma K, Sharma J, Babu KD, Pal R, Mundewadikar D, Saminathan T, Cantrell R, Nimmakayala P, Reddy U (2015) Genetic diversity and association mapping of bacterial blight and other horticulturally important traits with microsatellite markers in pomegranate from India. Mol Genet Genomics 290:1393–1402

    Article  CAS  PubMed  Google Scholar 

  • Soriano J, Zuriaga E, Rubio P, Llácer G, Infante R, Badenes M (2011) Development and characterization of microsatellite markers in pomegranate (Punica granatum L.). Mol Breed 27:119–128

    Article  Google Scholar 

  • Van Ooijen JW (2004) MapQTL ® 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma B.V, Wageningen

    Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap ® 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Wei XJ, Xu JF, Guo HN, Jiang L, Chen SH, Yu CY, Zhou ZL, Hu PS, Zhai HQ, Wan JM (2010) DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol 153:1747–1758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yan W-H, Wang P, Chen H-X, Zhou H-J, Li Q-P, Wang C-R, Ding Z-H, Zhang Y-S, Yu S-B, Xing Y-Z, Zhang Q-F (2011) A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant 4:319–330

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Luo L, Xu C, Zhang Q, Xing Y (2006) Quantitative trait loci for panicle size, heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rice (Oryza sativa). Theor Appl Genet 113:361–368

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Chen PY, Chen CY, Wang DC, Shi AN, Hou AF, Ishibashi T (2008) Quantitative trait loci mapping of seed hardiness in soybean. Crop Sci 48:1341–1349

    Article  Google Scholar 

  • Zhang YP, Tan HH, Cao SY, Wang XC, Yang G, Fang JG (2012) A novel strategy for identification of 47 pomegranate (Punica granatum) cultivars using RAPD markers. Genet Mol Res 11:3032–3041

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Kamel Hatib for growing and maintaining the orchards. This research was supported by funding from the Chief Scientist Office, Ministry of Agriculture & Rural Development, http://www.science.moag.gov.il/, Agricultural Biotechnology 203-0753-09.

Authors’ contribution statement

R. H. B. conducted the phenotyping of the mapping population and the genetic and mapping analysis and wrote the paper; A. S. and R. E. conducted the sequencing, marker development, and the genotyping of the mapping population; M. R. and R. O. conducted the marker development, array and probe design, array hybridization and signal preprocessing, and genotype calling; I. B. Y conducted the phenotyping of the ARO collection and the mapping population; T. T. conducted the total RNA extraction and developed the method for DNA extraction from pomegranate; and D. H. wrote the paper and designed and supervised the study. All authors discussed the results and commented on the manuscript.

Data Archiving Statement

Data base on which this study was based was published before by Ophir et al. (2014) and deposited in GenBank (http://www.ncbi.nlm.nih.gov/sra/SRX395468[accn] and http://www.ncbi.nlm.nih.gov/sra/SRX395465[accn]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doron Holland.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by V. Decroocq

This article is part of the Topical Collection on Complex Traits

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource Table 1

(PDF 106 kb)

Online Resource Table 2

(PDF 8 kb)

Online Resource Table 3

(PDF 578 kb)

Online Resource Table 4

(PDF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harel-Beja, R., Sherman, A., Rubinstein, M. et al. A novel genetic map of pomegranate based on transcript markers enriched with QTLs for fruit quality traits. Tree Genetics & Genomes 11, 109 (2015). https://doi.org/10.1007/s11295-015-0936-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-015-0936-0

Keywords

Navigation