Skip to main content
Log in

Genetic diversity and association mapping of bacterial blight and other horticulturally important traits with microsatellite markers in pomegranate from India

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

This genetic diversity study aimed to estimate the population structure and explore the use of association mapping strategies to identify linked markers for bacterial resistance, growth and fruit quality in pomegranate collections from India. In total, 88 accessions including 37 cultivated types were investigated. A total of 112 alleles were amplified by use of 44 publicly available microsatellites for estimating molecular genetic diversity and population structure. Neighbor-joining analysis, model-based population structure and principal component analysis corroborated the genetic relationships among wild-type and cultivated pomegranate collections from India. Our study placed all 88 germplasm into four clusters. We identified a cultivated clade of pomegranates in close proximity to Daru types of wild-type pomegranates that grow naturally near the foothills of the Himalayas. Admixture analysis sorted various lineages of cultivated pomegranates to their respective ancestral forms. We identified four linked markers for fruit weight, titratable acidity and bacterial blight severity. PGCT001 was found associated with both fruit weight and bacterial blight, and the association with fruit weight during both seasons analyzed was significant after Bonferroni correction. This research demonstrates effectiveness of microsatellites to resolve population structure among the wild and cultivar collection of pomegranates and future use for association mapping studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed MM, Samir ES, El-Shehawi AM, Alkafafy ME (2014) Anti-obesity effects of Taif and Egyptian pomegranates: molecular study. Biosci Biotechnol Biochem 24:1–12

    Google Scholar 

  • Ajal EA, Jbir R, Melgarejo P, Hernández F, Haddioui A, Hannachi AS (2014) Efficiency of Inter Simple Sequence Repeat (ISSR) markers for the assessment of genetic diversity of Moroccan pomegranate (Punica granatum L.) cultivars. Biochem Syst Ecol 56:24–31

    Article  CAS  Google Scholar 

  • Aslan A, Can MI, Boydak D (2014) Anti-oxidant effects of pomegranate juice on Saccharomyces cerevisiae cell growth. Afr J Tradit Complement Altern Med 11(4):14–18

    Article  PubMed Central  PubMed  Google Scholar 

  • Bellesia A, Verzelloni E, Tagliazucchi D (2014) Pomegranate ellagitannins inhibit alpha-glucosidase activity in vitro and reduce starch digestibility under simulated gastro-intestinal conditions. Int J Food Sci Nutr 18:1–8

    Google Scholar 

  • Benagi VI, Kumar RMR (2009) Present status of pomegranate bacterial blight and its management. In: Souvenir and abstracts, 2nd international symposium on pomegranate and minor including mediterranean fruits, org. ISHS, Belgium, June 23–27, 2009 at UAS, Dharwad, pp 53–58 (also http://www.actahort.org/books/890/)

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Caliskan O, Bayazit S (2013) Morpho-pomological and chemical diversity of pomegranate accessions grown in Eastern mediterranean region of Turkey. J Agric Sci Technol 15:1449–1460

    Google Scholar 

  • Chand R, Kishun R (1991) Studies on bacterial blight (Xanthomonas campestris pv. punica) of pomegranate. Indian Phytopathol 44(3):370–372

    Google Scholar 

  • Chand R, Kishun R (1993) Systemic movement of Xanthomonas campestris pv. punica (Hingorani and Singh) Dye from leaf to node in pomegranate. Int J Tropical Plant Dis 11(1):85–90

    Google Scholar 

  • Chauhan RD, Kanwar K (2012) Biotechnological advances in pomegranate (Punica granatum L.). In Vitro Cell Develop Biol Plant 48(6):579–594

    Article  CAS  Google Scholar 

  • Chen C, Bock C, Okie W, Gmitter F, Jung S, Main D, Beckman T, Wood B (2014) Genome-wide characterization and selection of expressed sequence tag simple sequence repeat primers for optimized marker distribution and reliability in peach. Tree Genet Genomes. doi:10.1007/s11295-014-0759-4

    Google Scholar 

  • Churbanov A, Ryan R, Hasan N, Bailey D, Chen H, Milligan B, Houde P (2012) HighSSR: high-throughput SSR characterization and locus development from next-gen sequencing data. Bioinformatics 28(21):2797–2803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • CROPSAP (2013) e’ pest surveillance: Pests of Fruits (Banana, Mango and Pomegranate)—‘e’ Pest surveillance and pest management advisory. In: Ahuja DB (ed) Published by National Centre for Integrated Pest Management, New Delhi and Department of Horticulture, Commissionerate of Agriculture (Horticulture), New Delhi, p 67

  • Crossa J, Franco J (2004) Statistical methods for classifying genotypes. Euphytica 137(1):19–37

    Article  CAS  Google Scholar 

  • Curro S, Caruso M, Distefano G, Gentile A, La Malfa S (2010) New microsatellite loci for pomegranate, Punica granatum (Lythraceae). Am J Bot 97(7):16

    Article  Google Scholar 

  • Dassprakash MV, Arun R, Abraham SK, Premkumar K (2012) In vitro and in vivo evaluation of antioxidant and antigenotoxic potential of Punica granatum leaf extract. Pharm Biol 50(12):1523–1530

    Article  PubMed  Google Scholar 

  • Earl D, vonHoldt B (2012) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conservation Genet Resour 4(2):359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Ebrahimi S, Sayed-Tabatabaei BE, Sharifnabi B (2010) Microsatellite isolation and characterization in pomegranate (Punica granatum L.). Iranian. J Biotechnol 8(3):156–163

    CAS  Google Scholar 

  • Ercisli S, Gadze J, Agar G, Yildirim N, Hizarci Y (2011a) Genetic relationships among wild pomegranate (Punica granatum L) genotypes from Coruh Valley in Turkey. Genet Mol Res 10(1):459–464

    Article  CAS  PubMed  Google Scholar 

  • Ercisli S, Kafkas E, Orhan E, Kafkas S, Dogan Y, Esitken A (2011b) Genetic characterization of pomegranate (Punica granatum L.) genotypes by AFLP markers. Biol Res 44(4):345–350

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Ferrara G, Giancaspro A, Mazzeo A, Giove SL, Matarrese AMS, Pacucci C, Punzi R, Trani A, Gambacorta G, Blanco A, Gadaleta A (2014) Characterization of pomegranate (Punica granatum L.) genotypes collected in Puglia region, Southeastern Italy. Sci Hortic 178:70–78

    Article  Google Scholar 

  • Hasnaoui N, Buonamici A, Sebastiani F, Mars M, Trifi M, Vendramin G (2010) Development and characterization of SSR markers for pomegranate (Punica granatum L.) using an enriched library. conservation genetics. Resources 2(1):283–285

    Google Scholar 

  • Hasnaoui N, Buonamici A, Sebastiani F, Mars M, Zhang D, Vendramin GG (2012) Molecular genetic diversity of Punica granatum L. (pomegranate) as revealed by microsatellite DNA markers (SSR). Gene 493(1):105–112

    Article  CAS  PubMed  Google Scholar 

  • Hingorani MK, Mehta PP (1952) Bacterial leaf spot of pomegranate. Indian Phytopathol 5:55–56

    Google Scholar 

  • Hingorani MK, Singh NJ (1960) Xanthomonas punicae sp. nov. on punica granatum L. Indian Journal of Agricultural Science 29(1):45–48

    Google Scholar 

  • Holland D, Bar-Ya’akov I (2014) Pomegranate: aspects concerning dynamics of health beneficial phytochemicals and therapeutic properties with respect to the tree cultivar and the environment. In: Medicinal and aromatic plants of the Middle-East. Springer,Berlin pp 225–239

  • Jalikop S, Rawal R, Kumar R (2005) Exploitation of sub-temperate pomegranate Daru in breeding tropical varieties. Acta Hortic 696:107–112

    Google Scholar 

  • Jian ZH, Liu XS, Hu JB, Chen YH, Feng JC (2012) Mining microsatellite markers from public expressed sequence tag sequences for genetic diversity analysis in pomegranate. J Genet 91(3):353–358

    Article  PubMed  Google Scholar 

  • Malviya S, Arvind, Jha A, Hettiarachchy N (2014) Antioxidant and antibacterial potential of pomegranate peel extracts. J Food Sci Technol 51(12):4132–4137

    Article  CAS  PubMed  Google Scholar 

  • Mayuoni-Kirshinbaum L, Porat R (2014) The flavor of pomegranate fruit: a review. J Sci Food Agric 94(1):21–27

    Article  CAS  PubMed  Google Scholar 

  • Mehrzadi S, Sadr S, Hosseinzadeh A, Gholamine B, Shahbazi A, FallahHuseini H, Ghaznavi H (2014) Anticonvulsant activity of the ethanolic extract of Punica granatum L. seed. Neurol Res 21:1743132814Y0000000460

    Google Scholar 

  • Narshimulu G, Jamaloddin M, Vemireddy LR, Anuradha G, Siddiq E (2011) Potentiality of evenly distributed hypervariable microsatellite markers in marker-assisted breeding of rice. Plant Breed 130(3):314–320. doi:10.1111/j.1439-0523.2010.01834.x

    Article  CAS  Google Scholar 

  • Narzary D, Rana T, Ranade S (2010) Genetic diversity in inter-simple sequence repeat profiles across natural populations of Indian pomegranate (Punica granatum L.). Plant Biol 12(5):806–813

    Article  CAS  PubMed  Google Scholar 

  • Nimmakayala P, Abburi VL, Abburi L, Alaparthi SB, Cantrell R, Park M, Choi D, Hankins G, Malkaram S, Reddy UK (2014) Linkage disequilibrium and population-structure analysis among Capsicum annuum L. cultivars for use in association mapping. Mol Genet Genomics 289(4):513–521

    Article  CAS  PubMed  Google Scholar 

  • Noormohammadi Z, Fasihee A, Homaee-Rashidpoor S, Sheidai M, Baraki SG, Mazooji A, Tabatabaee-Ardakani SZ (2012) Genetic variation among Iranian pomegranates (‘Punica granatum’L.) using RAPD, ISSR and SSR markers. Aust J Crop Sci 6(2):268–275

    CAS  Google Scholar 

  • Omayma MI, Rania AY, Ibrahim A (2014) Morphological and molecular evaluation of some Egyptian pomegranate cultivars. Afr J Biotechnol 13(2):226–237

    Article  Google Scholar 

  • Ophir R, Sherman A, Rubinstein M, Eshed R, Sharabi Schwager M, Harel-Beja R, Bar-Ya’akov I, Holland D (2014) Single-nucleotide polymorphism markers from de-novo assembly of the pomegranate transcriptome reveal germplasm genetic diversity. PLoS One 9(2):e88998

    Article  PubMed Central  PubMed  Google Scholar 

  • Pirseyedi SM, Valizadehghan S, Mardi M, Ghaffari MR, Mahmoodi P, Zahravi M, Zeinalabedini M, Nekoui SM (2010) Isolation and characterization of novel microsatellite markers in pomegranate (Punica granatum L.). Int J Mol Sci 11(5):2010–2016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pruthi J, Saxena A (1984) Studies on anardana (dried pomegranate seeds). J Food Sci Technol 21:296–299

    CAS  Google Scholar 

  • Rafieian-Kopaei M, Hosseini M, Shirzad H (2014) Comment on: effect of pomegranate flower extract oncis platin-induced nephrotoxicity in rats. J Nephropathol 3(4):121–123

    PubMed Central  PubMed  Google Scholar 

  • Rana JC, Pradheep K, Verma V (2007) Naturally occurring wild relatives of temperate fruits in Western Himalayan region of India: an analysis. Biodivers Conserv 16(14):3963–3991

    Article  Google Scholar 

  • Sarkhosh A, Zamani Z, Fatahi R, Hassani ME, Wiedow C, Buck E, Gardiner SE (2011) Genetic diversity of Iranian soft-seed pomegranate genotypes as revealed by fluorescent-AFLP markers. Physiol Mol Biol Plants 17(3):305–311

    Article  PubMed Central  PubMed  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetics data analysis, user manual

  • Sharma SD, Sharma VK (1990) Variation for chemical characters in some promising strains of wild pomegranate (Punica granatum L.). Euphytica 49(2):131–133. doi:10.1007/bf00027262

    Article  Google Scholar 

  • Sharma KK, Sharma J, Jadhav VT (2010) Status of bacterial blight of pomegranate in India. In: Fruit, vegetable, cereal science and biotechnology 4 (special issue 2), Global Science Books (publ), Japan, pp 102–105

  • Sharma J, Sharma KK, VT J (2012) Diseases of pomegranate. In: Diseases of Fruit Crops Misra AK, Chowdappa P, Sharma Pratibha, Khetrapal RK (eds) Indian Phytopathological Society (ISBN:81-7019-474-1 India; ISBN:1-55528-331-4 USA), New Delhi, pp 181–224

  • Soriano JM, Zuriaga E, Rubio P, Llácer G, Infante R, Badenes ML (2011) Development and characterization of microsatellite markers in pomegranate (Punica granatum L.). Mol Breed 27(1):119–128

    Article  Google Scholar 

  • Subash S, Braidy N, Essa MM, Zayana AB, Ragini V, Al-Adawi S, Al-Asmi A, Guillemin GJ (2015) Long-term (15 mo) dietary supplementation with pomegranates from Oman attenuates cognitive and behavioral deficits in a transgenic mice model of Alzheimer’s disease. Nutrition 31(1):223–229

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teixeira da Silva JA, Rana TS, Narzary D, Verma N, Meshram DT, Ranade SA (2013) Pomegranate biology and biotechnology: a review. Sci Hortic 160:85–107

    Article  CAS  Google Scholar 

  • Wang JY, Zhu C, Qian TW, Guo H, Wang DD, Zhang F, Yin X (2015) Extracts of black bean peel and pomegranate peel ameliorate oxidative stress-induced hyperglycemia in mice. Exp Ther Med 9(1):43–48

    PubMed Central  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358–1370

    Article  Google Scholar 

  • Yeh FC, Yang RC, Boyle T (1999) POPGENE. Microsoft windows-based freeware for population genetic analysis, Release 1.31. University of Alberta, Edmonton

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17(2):155–160

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Yin Y, Qu J, Zhu L, Li Y (2007) Population genetic diversity in Chinese pomegranate (Punica granatum L.) cultivars revealed by fluorescent-AFLP markers. J Genet Genomics 34(12):1061–1071

    Article  CAS  PubMed  Google Scholar 

  • Zeinalabedini M, Derazmahalleh MM, RoodbarShojaie T, Irandoost HP, Zahravi M, Vazifehshenas M, Ebrahimi MA, Nekouei SMK, Salekdeh GH, Mardi M (2012) Extensive genetic diversity in Iranian pomegranate (Punica granatum L.) germplasm revealed by microsatellite markers. Sci Hortic 146:104–114

    Article  Google Scholar 

  • Zhang Y, Tan H, Cao S, Wang X, Yang G, Fang J (2012) A novel strategy for identification of 47 pomegranate (Punica granatum) cultivars using RAPD markers. Genet Mol Res 11:3032–3041

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3(1):e4

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao L, Li M, Cai G, Pan T, Shan C (2013) Assessment of the genetic diversity and genetic relationships of pomegranate (Punica granatum L.) in China using RAMP markers. Sci Hortic 151:63–67

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Indian Council of Agricultural Research (ICAR) and the Gus R. Douglass Institute of West Virginia State University. We declare that we have no conflicts of interest. The authors thank the National Agricultural Innovation Project, ICAR, for sponsoring visits of N.V. Singh, D. Ramajayam and Ravinder Kumar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh K. Reddy.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig S1: Skree plot of individual and cumulative proportions vs. principal component to infer variation that can be explained by principal component analysis.

Supplementary material 1 (JPEG 24 kb)

Supplementary material 2 (DOCX 23 kb)

Supplementary material 3 (DOCX 17 kb)

Supplementary material 4 (DOCX 24 kb)

Supplementary material 5 (DOCX 20 kb)

Supplementary material 6 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N.V., Abburi, V.L., Ramajayam, D. et al. Genetic diversity and association mapping of bacterial blight and other horticulturally important traits with microsatellite markers in pomegranate from India. Mol Genet Genomics 290, 1393–1402 (2015). https://doi.org/10.1007/s00438-015-1003-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1003-0

Keywords

Navigation