Skip to main content
Log in

The genetic architecture of local adaptation I: the genomic landscape of foxtail pine (Pinus balfouriana Grev. & Balf.) as revealed from a high-density linkage map

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Explaining the origin and evolutionary dynamics of the genetic architecture of adaptation is a major research goal of evolutionary genetics. Despite controversy surrounding success of the attempts to accomplish this goal, a full understanding of adaptive genetic variation necessitates knowledge about the genomic location and patterns of dispersion for the genetic components affecting fitness-related phenotypic traits. Even with advances in next-generation sequencing technologies, the production of full genome sequences for non-model species is often cost-prohibitive, especially for tree species such as pines where genome size often exceeds 20 to 30 Gbp. We address this need by constructing a dense linkage map for foxtail pine (Pinus balfouriana Grev. & Balf.), with the ultimate goal of uncovering and explaining the origin and evolutionary dynamics of adaptive genetic variation in natural populations of this forest tree species. We utilized megagametophyte arrays (n = 76–95 megagametophytes/tree) from four maternal trees in combination with double digest restriction-site associated DNA sequencing (ddRADseq) to produce a consensus linkage map covering 98.58 % of the foxtail pine genome, which was estimated to be 1276 cM in length (95 % CI, 1174 to 1378 cM). A novel bioinformatic approach using iterative rounds of marker ordering and imputation was employed to produce single-tree linkage maps (507–17,066 contigs/map; lengths, 1037.40–1572.80 cM). These linkage maps were collinear across maternal trees, with highly correlated marker orderings (Spearman’s ρ>0.95). A consensus linkage map derived from these single-tree linkage maps contained 12 linkage groups along which 20,655 contigs were non-randomly distributed across 901 unique positions (n=23 contigs/position), with an average spacing of 1.34 cM between adjacent positions. Of the 20,655 contigs positioned on the consensus linkage map, 5627 had enough sequence similarity to contigs contained within the most recent build of the loblolly pine (Pinus taeda L.) genome to identify them as putative homologues containing both genic and non-genic loci. Importantly, all 901 unique positions on the consensus linkage map had at least one contig with putative homology to loblolly pine. When combined with the other biological signals that predominate in our data (e.g., correlations of recombination fractions across single trees), we show that dense linkage maps for non-model forest tree species can be efficiently constructed using next-generation sequencing technologies. We subsequently discuss the usefulness of these maps as community-wide resources and as tools with which to test hypotheses about the genetic architecture of local adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acheré V, Faivre-Rampant P, Jeandroz S, Besnard G, Markussen T, Aragones A, Fladung M, Ritter E, Favre J M (2004) A full saturated linkage map of Picea abies including AFLP, SSR, ESTP, 5S rDNA and morphological markers. Theor Appl Genet 108:1602–1613

    Article  PubMed  Google Scholar 

  • Ahuja M R, Neale D B (2005) Evolution of genome size in conifers. Silvae Genetica 54:126–137

    Google Scholar 

  • Akerman A, Bürger R (2014) The consequences of gene flow for local adaptation and differentiation: a two-locus two-deme model. Math Biol 68:1135–1198

    Article  Google Scholar 

  • Alberto F J, Aitken S N, Alia R, González-Martínez S C, Hanninen H, Kremer A, Lefevre F, Lenormand T, Yeaman S, Whetten R, Savolainen O (2013) Potential for evolutionary responses to climate change–evidence from tree populations. Glob Change Biol 19:1645–1661

    Article  Google Scholar 

  • Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Anderson J T, Lee C R, Rushworth C A, Colautti R I, Mitchell-Olds T (2013) Genetic trade-offs and conditional neutrality contribute to local adaptation. Mol Ecol 22:699–708

    Article  PubMed Central  PubMed  Google Scholar 

  • Anderson J T, Wagner M R, Rushworth C A, Prasad K V S K, Mitchell-Olds T (2014) The evolution of quantitative traits in complex environments. Heredity 195:1353–1372

    Google Scholar 

  • Antonovics J, Bradshaw A D (1970) Evolution in closely adjacent plant populations VIII. Clinal patterns at a mine boundary. Heredity 25:349–362

    Article  Google Scholar 

  • Bailey D K (1970) Phytogeography and taxonomy of Pinus subsection Balfourianae. Ann Mo Bot Gard 57:210–249

    Article  Google Scholar 

  • Cairney J, Pullman G S (2007) The cellular and molecular biology of conifer embryogenesis. New Phytol 176:511–536

    Article  CAS  PubMed  Google Scholar 

  • Cartwright D A, Troggio M, Velasco R, Gutin A (2007) Genetic mapping in the presence of genotyping errors. Genetics 176:2521–2527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chakravarti A, Lasher L K, Reefer J E (1991) A maximum-likelihood method for estimating genome length using genetic linkage data. Genetics 128:175–182

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheema J, Dicks J (2009) Computational approaches and software tools for genetic linkage map estimation in plants. Brief Bioinform 10:595–608

    Article  CAS  PubMed  Google Scholar 

  • Danecek P, Auton A , Abecasis G , Albers CA , Banks E , DePristo MA , Handsaker RE, Lunter G , Marth GT , Sherry ST, McVean G , Durbin R (2011) 1000 Genomes Project Analysis Group. The variant call format and VCFtools Bioinformatics 27:2156–2158

    CAS  Google Scholar 

  • Davey J W, Blaxter M L (2010) RADSeq: next-generation population genetics. Brief Funct Genomics 9:416–423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eckert A J, Hall B D (2006) Phylogeny, historical biogeography, and patterns of diversification for Pinus (Pinaceae): phylogenetic tests of fossil-based hypotheses. Mol Phylogenet Evol 40:166–182

    Article  CAS  PubMed  Google Scholar 

  • Eckert A J, Tearse B R, Hall B D (2008) A phylogeographical analysis of the range disjunction for foxtail pine (Pinus balfouriana, Pinaceae): the role of pleistocene glaciation. Mol Ecol 17 :1983–1997

    Article  CAS  PubMed  Google Scholar 

  • Eckert A J, Pande B, Ersoz E S, Wright M H, Rashbrook V K, Nicolet C M, Neale D B (2009) High-throughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (Pinus taedaL.) Tree Genet Genomes 5:225–234

    Article  Google Scholar 

  • Eckert A J, Bower A D, González-Martínez S C, Wegrzyn J L, Coop G, Neale DB (2010a) Back to nature: ecological genomics of loblolly pine (Pinus taeda, Pinaceae). Mol Ecol 19:3789–3805

  • Eckert A J, van Heerwaarden J, Wegrzyn J L, Nelson C D, Ross-Ibarra J, González-Martínez SC, Neale D B (2010b) Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics 185:969–982

  • Eckert A J, Wegrzyn J L, Liechty J D, Lee J M, Cumbie W P, Davis J M, Goldfarb B, Loopstra C A, Palle S R, Quesada T, Langley C H, Neale D B (2013) The evolutionary genetics of the genes underlying phenotypic associations for loblolly pine (Pinus taeda, Pinaceae). Genetics 112:4–12

    Google Scholar 

  • Ellegren H, Sheldon B C (2008) Genetic basis of fitness differences in natural populations. Nature 452:169–175

    Article  CAS  PubMed  Google Scholar 

  • Fisher R A (1918) The correlation between relatives on the supposition of Mendelian inheritance. Trans Roy Soc Edinb 52:399–433

    Article  Google Scholar 

  • Fournier-Level A, Wilczek A M, Cooper M D, Roe J L, Anderson J, Eaton D, Moyers B T, Petipas R H, Schaeffer R N, Pieper B, Reymond M, Koornneef M, Welch S M, Remington D L, Schmitt J (2013) Paths to selection on life history loci in different natural environments across the native range of Arabidopsis thaliana. Mol Ecol 22:3552–3566

    Article  CAS  PubMed  Google Scholar 

  • Friedline C J, Franklin R B, McCallister S L, Rivera M C (2012) Bacterial assemblages of the eastern Atlantic Ocean reveal both vertical and latitudinal biogeographic signatures. Biogeosciences 9 :2177–2193

    Article  Google Scholar 

  • Gernandt D S, Lopez G G, Garcia S O, Liston A (2005) Phylogeny and classification of Pinus. Taxon 54:29–42

    Article  Google Scholar 

  • Ghodsi M, Hill C M, Astrovskaya I, Lin H, Sommer D D, Koren S, Pop M (2013) De novo likelihood-based measures for comparing genome assemblies. BMC Research Notes 6:334

    Article  PubMed Central  PubMed  Google Scholar 

  • Hackett C A, Broadfoot L B (2003) Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity 90:33–38

    Article  CAS  PubMed  Google Scholar 

  • Hamming R W (1950) Error detecting and error correcting codes. Bell System Technical Journal 29:147–160

    Article  Google Scholar 

  • Hausmann N J, Juenger T E, Sen S, Stowe K A, Dawson T E, Simms E L (2005) Quantitative trait loci affecting δ 13C and response to differential water availability in Arabidopsis thaliana. Evolution 59:81–96

    CAS  PubMed  Google Scholar 

  • Hoffmann AA, Riesberg LH (2008) Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation. Annu Rev Ecol Evol Syst 39:21–42

    Article  PubMed Central  PubMed  Google Scholar 

  • Houle D, Pelabon C, Wagner GP, Hansen TF (2011) Measurement and meaning in biology. Q Rev Biol 86:3–34

    Article  PubMed  Google Scholar 

  • Ingvarsson P K, Street N R (2011) Association genetics of complex traits in plants. New Phytol 189:909–922

    Article  PubMed  Google Scholar 

  • Kang B Y, Mann I K, Major J E, Rajora O P (2010) Near-saturated and complete genetic linkage map of black spruce (Picea mariana). BMC Genomics 11:515

    Article  PubMed Central  PubMed  Google Scholar 

  • Kawecki T J, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

    Article  Google Scholar 

  • Keeling C I, Weisshaar S, Lin R P C, Bohlmann J (2008) Functional plasticity of paralogous diterpene synthases involved in conifer defense. Proc Natl Acad Sci USA 105:1085–1090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirkpatrick M, Barton N (2006) Chromosome inversions, local adaptation and speciation. Genetics 173:419–434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koboldt D C, Steinberg K M, Larson D E, Wilson R K, Mardis E R (2013) The next-generation sequencing revolution and its impact on genomics. Cell 155:27–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kosambi D D (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kubisiak T L, Nelson C D, Name W L, Stine M (1996) Comparison of rapd linkage maps constructed for a single longleaf pine from both haploid and diploid mapping populations. For Genet 3:203–211

    Google Scholar 

  • Lange K, Boehnke M (1982) How many polymorphic marker genes will it take to span the human genome. Am J Hum Genet 128:842–845

    Google Scholar 

  • Langmead B, Salzberg S L (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Handsaker B, Subgroup GPDP, 10 (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed Central  PubMed  Google Scholar 

  • Limborg MT, Waples RK, Seeb JE, Seeb LW (2014) Temporally isolated lineages of pink salmon reveal unique signatures of selection on distinct pools of standing genetic variation. J Hered 105:741–751

    Article  PubMed  Google Scholar 

  • Mackay J, Dean JFD, Plomion C, Peterson DG, Canovas FM, Pavy N, Ingvarsson PK, Savolainen O, Guevara MA, Fluch S, Vinceti B, Abarca D, Diaz-Sala C, Cervera MT (2012) Towards decoding the conifer giga-genome. Plant Mol Biol 80:555–569

    Article  CAS  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Martínez-García PJ, Stevens KA, Wegrzyn JL, Liechty J, Crepeau, M, Langley CH, Neale DB (2013) Combination of multipoint maximum likelihood (MML) and regression mapping algorithms to construct a high-density genetic linkage map for loblolly pine (Pinus taeda L.) Tree Genet Genomes 9:1529–1535

    Article  Google Scholar 

  • Mastrogiuseppe RJ, Mastrogiuseppe JD (1980) A study of Pinus balfouriana Grev. & Balf. (Pinaceae). Syst Bot 5:86–104

    Article  Google Scholar 

  • Mauricio R (2001) Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat Rev Genet 2:370–381

    Article  CAS  PubMed  Google Scholar 

  • Moritsuka E, Histaka Y, Tamura M, Uchiyama K, A W Tsmura Y, Tachida H (2012) Extended linkage disequilibrium in noncoding regions in a conifer, Cryptomeria japonica. Genetics 190:1145–1148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morris RW, Spieth PT (1978) Sampling strategies for using female gametophytes to estimate heterozygosity in conifers. Theor Appl Genet 51:217–222

    Article  CAS  PubMed  Google Scholar 

  • Morton NE (1955) Sequential tests for the detection of linkage. Am J Hum Genet 7:277–318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murray BG (1998) Nuclear DNA amounts in gymnosperms. Ann Bot 82:3–15

    Article  CAS  Google Scholar 

  • Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122

    Article  CAS  PubMed  Google Scholar 

  • Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D et al (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biology 15:R59

    Article  PubMed Central  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press

  • Nelson CD, Nance WL, Doudrick RL (1993) A partial genetic linkage map of slash pine (Pinus elliottii Engelm. var. elliottii) based on random amplified polymorphic DNA. Theor Appl Genet 87:145–151

    Article  CAS  PubMed  Google Scholar 

  • Neves LG, Davis JM, Barbazuk WB, M K (2014) A high-density gene map of loblolly pine (Pinus taeda L.) based on exome sequence capture genotyping. G3 4:29–37

    Article  PubMed Central  PubMed  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584

    Article  CAS  PubMed  Google Scholar 

  • Oline DK, Mitton JB, Grant MC (2000) Population and subspecific genetic differentiation in the foxtail pine (Pinus balfouriana). Evolution 54:1813–1819

    Article  CAS  PubMed  Google Scholar 

  • Pannell JR, Fields PD (2013) Evolution in subdivided plant populations: concepts, recent advances and future directions. New Phytol 201:417–432

    Article  PubMed  Google Scholar 

  • Parchman T L, Gompert Z, Mudge J, Schilkey FD, Benkman CW, Buerkle CA (2012) Genome-wide association genetics of an adaptive trait in lodgepole pine. Mol Ecol 21:2991–3005

    Article  CAS  PubMed  Google Scholar 

  • Pavy N, Pelgas B, Laroche J, Rigault P, Isabel N, Bousquet J (2012) A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers. BMC Biology 10:84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7: e37

  • Pfender WF, Saha MC, Johnson EA, Slabaugh MB (2011) Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. Theor Appl Genet 122:1467–1480

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL http://www.R-project.org

  • Ritland K, Krutovsky KV, Tsumura Y, Pelgas B, Isabel N, Bousquet J (2011) Genetic mapping in conifers. In: Plomion C, Bousquet J, Kole C (eds) Genetics, Genomics and Breeding of Conifers. CRC Press, New York, pp 196–238

  • Rousseeuw P J (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    Article  Google Scholar 

  • Scheet P, Stephens M (2006) A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 78:629–644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15:72–101

    Article  Google Scholar 

  • Stevison LS, Hoehn KB, Noor MAF (2011) Effects of inversions on within- and between-species recombination and divergence. Genome Biol Evol 3:830–841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identificaiton of a functinal transposon insertion in the maize domestication gene tb1. Nat Genet 43:1160–1163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sturtevant AH (1913) The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J Exp Zool 14:43–59

    Article  Google Scholar 

  • Supek F, Bosnjak M, Skunca N, Smuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6: e21

  • Tani N, Takahashi T, Iwata H, Mukai Y, Ujino-Ihara T et al (2003) A consensus linkage map for sugi (Cryptomeria japonica) from two pedigrees, based on microsatellites and expressed sequence tags. Genetics 165:1551–1568

    CAS  PubMed Central  PubMed  Google Scholar 

  • Travis S E, Ritland K, Whitham TG, Keim P (1998) A genetic linkage map of pinyon pine (Pinus edulis) based on amplified fragment length polymorphisms. Theor Appl Genet 97:871–880

    Article  CAS  Google Scholar 

  • Tulsieram LK, Glaubitz JC, Kiss G, Carlson JE (1992) Singletree genetic linkage mapping in conifers using haploid DNA from megagametophytes. Biotechnology 10:3–34

    Google Scholar 

  • Van Ooijen JW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res 93:343– 349

    Article  CAS  Google Scholar 

  • Ward J, Bhangoo J, Fernandez-Fernandez F, Moore P, Swanson J, Viola R, Velasco R, Bassil N, Weber C, Sargent D (2013) Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genomics 14:2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ward JHJ (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  • White TL, Adams WT, Neale DB (2007) Forest genetics. CABI Publishing, Cambridge

    Book  Google Scholar 

  • Willyard A, Syring J, Gernandt D, Liston A (2007) Cronn R, Fossil calibration of molecular divergence in Pinus: inferences for ages and mutation rates. Mol Biol Evol 24:90–101

    Article  PubMed  Google Scholar 

  • Wu Y, Bhat PR, Close TJ, Lonardi S (2008a) Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genetics 4:e1000

  • Wu Y, Close TJ, Lonardi S (2008b) On the accurate construction of consensus genetic maps. Computational Systems and Bioinformatics Conference 7:285–296

  • Yeaman S (2013) Genomic rearrangements and the evolution of clusters of locally adaptive loci. Proc Natl Acad Sci USA 110:E1743–E1751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yeaman S, Whitlock MC (2011) The genetic architecture of adaptation under migration-selection balance. Evolution 65:1897–1911

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the staff at the USDA Institute of Forest Genetics, the VCU Nucleic Acids Research Facility, and the VCU Center for High Performance Computing. In addition, we would like to thank Tom Blush and Tom Burt for help in obtaining seeds. Funding for this project was made available to AJE via start-up funds from Virginia Commonwealth University. CJF was supported by the National Science Foundation (NSF) National Plant Genome Initiative (NPGI): Postdoctoral Research Fellowship in Biology (PRFB) FY 2013 Award no. NSF-NPGI-PRFB-1306622.

Data Archiving Statement

Raw short read data are located in the NCBI Short Read Archive (accession number: PRJNA266319). The linkage map summary files, assembly used for read mapping and SNP calling, and VCF files are given as supporting documents (Files S1 - S3). The consensus linkage map is also available in the Comparative Mapping Database located at the Dendrome website (accession number: TG151). Source code for this manuscript and data analyses are located at http://www.github.com/cfriedline/foxtail_linkage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Eckert.

Additional information

Communicated by S. N. Aitken

This article is part of Topical collection on Adaptation

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.22 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedline, C.J., Lind, B.M., Hobson, E.M. et al. The genetic architecture of local adaptation I: the genomic landscape of foxtail pine (Pinus balfouriana Grev. & Balf.) as revealed from a high-density linkage map. Tree Genetics & Genomes 11, 49 (2015). https://doi.org/10.1007/s11295-015-0866-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-015-0866-x

Keywords

Navigation