Skip to main content

Advertisement

Log in

Combination of multipoint maximum likelihood (MML) and regression mapping algorithms to construct a high-density genetic linkage map for loblolly pine (Pinus taeda L.)

  • Short Communication
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Genetic maps have been successfully applied to assist in the dissection of complex traits, provide insight on genome structure, and estimate recombination in conjunction with physical maps. Despite an extensive list of genetic maps developed for loblolly pine (Pinus taeda L.) over the past two decades, a high-density consensus map has not yet been constructed. In this study, we used two reference three-generation outbred pedigrees, base and qtl, obtained from the North Carolina State University Cooperative Tree Improvement Program, to obtain a high-density genetic consensus map. Both populations were genotyped with ≈ 7,000 different markers (restriction fragment length polymorphisms, expressed sequence tag polymorphisms, simple sequence repeats, SNPs). The grouping, ordering, and spacing of the markers on each linkage group were performed with JoinMap® 4.1, which implements the multipoint maximum likelihood algorithm for outbred populations. The final consensus map contains 2,466 markers, with a total length of 1,476 centimorgans (cM). The average marker density across the 12 linkage groups was 0.62 cM/marker. This high-density map provides an important resource for breeders and geneticists and will enable comparative studies across species, as well as improve the loblolly pine genome sequence assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Bennetzen JL, Freeling M (1993) Grasses as a single genetic system: genome composition, collinearity and compatibility. Trends Genet 9(8):259–261. doi:10.1016/0168-9525(93)90001-X

    Article  PubMed  CAS  Google Scholar 

  • Brown GR, Kadel EE, Bassoni DL, Kiehne KL, Temesgen B, van Buijtenen JP, Sewell MM, Marshall KA, Neale DB (2001) Anchored reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomics. Genetics 159(2):799–809

    PubMed  CAS  Google Scholar 

  • Cartwright D, Troggio M, Velasco R, Gutin A (2007) Genetic mapping in the presence of genotyping errors. Genetics 176:2521–2527

    Article  PubMed  CAS  Google Scholar 

  • Chagne D, Brown G, Lalanne C, Madur D, Pot D, Neale D, Plomion C (2003) Comparative genome and QTL mapping between maritime and loblolly pines. Mol Breed 12(3):185–195. doi:10.1023/A:1026318327911

    Article  CAS  Google Scholar 

  • D’hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M, Da Silva C, Jabbari K, Cardi C, Poulain J, Souquet M, Labadie K, Jourda C, Lengelle J, Rodier-Goud M, Alberti A, Bernard M, Correa M, Ayyampalayam S, Mckain MR, Leebens-Mack J, Burgess D, Freeling M, Mbeguie-A-Mbeguie D, Chabannes M, Wicker T, Panaud O, Barbosa J, Hribova E, Heslop-Harrison P, Habas R, Rivallan R, Francois P, Poiron C, Kilian A, Burthia D, Jenny C, Bakry F, Brown S, Guignon V, Kema G, Dita M, Waalwijk C, Joseph S, Dievart A, Jaillon O, Leclercq J, Argout X, Lyons E, Almeida A, Jeridi M, Dolezel J, Roux N, Risterucci AM, Weissenbach J, Ruiz M, Glaszmann JC, Quetier F, Yahiaoui N, Wincker P (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488(7410):213–217. doi:10.1038/Nature11241

    Article  PubMed  Google Scholar 

  • De Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CARTHAGENE: multipopulation integrated genetic and radiated hybrid mapping. Bioinformatics 21:1703–1704

    Article  PubMed  Google Scholar 

  • De Keyser E, Shu Q, Van Bockstaele E, De Riek J (2010) Multipoint-likelihood maximization mapping on 4 segregating populations to achieve an integrated framework map for QTL analysis in pot azalea (Rhododendron simsii hybrids). BMC Mol Biol 11(1):1

    Article  PubMed  Google Scholar 

  • Devey ME, Fiddler TA, Liu BH, Knapp SJ, Neale DB (1994) An RFLP linkage map for loblolly pine based on a three-generation outbred pedigree. Theor Appl Genet 88(3–4):273–278

    PubMed  CAS  Google Scholar 

  • Duncan WH, Duncan MB (1988) Trees of the Southeastern United States. The University of Georgia Press, Athens, GA

    Google Scholar 

  • Echt C, Saha S, Deemer D, Nelson CD (2011a) Microsatellite DNA in genomic survey sequences and UniGenes of loblolly pine. Tree Genet Genomes 7(4):773–780. doi:10.1007/s11295-011-0373-7

    Article  Google Scholar 

  • Echt CS, Saha S, Krutovsky KV, Wimalanathan K, Erpelding JE, Liang C, Nelson CD (2011b) An annotated genetic map of loblolly pine based on microsatellite and cDNA markers. BMC Genet 12:17. doi:10.1186/1471-2156-12-17

    Article  PubMed  CAS  Google Scholar 

  • Eckert A, Pande B, Ersoz E, Wright M, Rashbrook V, Nicolet C, Neale D (2009) High-throughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (Pinus taeda L.). Tree Genet Genomes 5(1):225–234. doi:10.1007/s11295-008-0183-8

    Article  Google Scholar 

  • Eckert AJ, van Heerwaarden J, Wegrzyn JL, Nelson CD, Ross-Ibarra J, Gonzalez-Martinez SC, Neale DB (2010) Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics 185(3):969–982. doi:10.1534/Genetics.110.115543

    Article  PubMed  CAS  Google Scholar 

  • Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL, Hansen M, Steemers F, Butler SL, Deloukas P, Galver L, Hunt S, McBride C, Bibikova M, Rubano T, Chen J, Wickham E, Doucet D, Chang W, Campbell D, Zhang B, Kruglyak S, Bentley D, Haas J, Rigault P, Zhou L, Stuelpnagel J, Chee MS (2003) Highly parallel SNP genotyping. Cold Spring Harb Sym 68:69–78. doi:10.1101/Sqb.2003.68.69

    Article  CAS  Google Scholar 

  • Gonzalez-Benecke CA, Martin TA, Clark A, Peter GF (2010) Water availability and genetic effects on wood properties of loblolly pine (Pinus taeda). Can J Forest Res 40(12):2265–2277. doi:10.1139/X10-162

    Article  Google Scholar 

  • Groover A, Devey M, Fiddler T, Lee J, Megraw R, Mitchelolds T, Sherman B, Vujcic S, Williams C, Neale D (1994) Identification of quantitative trait loci influencing wood specific gravity in an outbred pedigree of loblolly pine. Genetics 138(4):1293–1300

    PubMed  CAS  Google Scholar 

  • Jansen J, de Jong AG, van Ooijen JW (2001) Constructing dense genetic linkage maps. Theor Appl Genet 102(6–7):1113–1122. doi:10.1007/S001220000489

    Article  CAS  Google Scholar 

  • Komulainen P, Brown GR, Mikkonen M, Karhu A, García-Gil MR, O’Malley D, Lee B, Neale DB, Savolainen O (2003) Comparing EST-based genetic maps between Pinus sylvestris and Pinus taeda. Theor Appl Genet 107(4):667–678. doi:10.1007/s00122-003-1312-2

    Article  PubMed  CAS  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12(1):172–175. doi:10.1111/j.1469-1809.1943.tb02321.x

    Article  Google Scholar 

  • Krutovsky KV, Troggio M, Brown GR, Jermstad KD, Neale DB (2004) Comparative mapping in the Pinaceae. Genetics 168(1):447–461. doi:10.1534/Genetics.104.028381

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1(2):174–181. doi:10.1016/0888-7543(87)90010-3

    Article  PubMed  CAS  Google Scholar 

  • Liesche J, Martens HJ, Schulz A (2011) Symplasmic transport and phloem loading in gymnosperm leaves. Protoplasma 248(1):181–190. doi:10.1007/S00709-010-0239-0

    Article  PubMed  CAS  Google Scholar 

  • Lorenz WW, Dean JFD (2002) SAGE Profiling and demonstration of differential gene expression along the axial developmental gradient of lignifying xylem in loblolly pine (Pinus taeda). Tree Physiol 22(5):301–310

    Article  PubMed  CAS  Google Scholar 

  • Lorenz WW, Alba R, Yu YS, Bordeaux JM, Simoes M, Dean JFD (2011) Microarray analysis and scale-free gene networks identify candidate regulators in drought-stressed roots of loblolly pine (P. taeda L.). BMC Genomics 12:264

    Article  PubMed  CAS  Google Scholar 

  • Magbanua ZV, Ozkan S, Bartlett BD, Chouvarine P, Saski CA, Liston A, Cronn RC, Nelson CD, Peterson DG (2011) Adventures in the enormous: a 1.8 million clone BAC library for the 21.7 Gb genome of loblolly pine. PLoS ONE 6(1):e16214

    Article  PubMed  CAS  Google Scholar 

  • Marone D, Laido G, Gadaleta A, Colasuonno P, Ficco DBM, Giancaspro A, Giove S, Panio G, Russo MA, De Vita P, Cattivelli L, Papa R, Blanco A, Mastrangelo AM (2012) A high-density consensus map of A and B wheat genomes. Theor Appl Genet 125(8):1619–1638. doi:10.1007/S00122-012-1939-Y

    Article  PubMed  Google Scholar 

  • Mirov NT, Stanley RG (1959) The pine tree. Annu Rev Plant Phys 10:223–238. doi:10.1146/Annurev.Pp.10.060159.001255

    Article  CAS  Google Scholar 

  • Morse AM, Peterson DG, Islam-Faridi MN, Smith KE, Magbanua Z, Garcia SA, Kubisiak TL, Amerson HV, Carlson JE, Nelson CD, Davis JM (2009) Evolution of genome size and complexity in Pinus. PLoS ONE 4(2):e4332. doi:10.1371/journal.pone.0004332

    Article  PubMed  Google Scholar 

  • Pavy N, Pelgas B, Laroche J, Rigault P, Isabel N, Bousquet J (2012) A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers. BMC Biol 10:84. doi:10.1186/1741-7007-10-84

    Article  PubMed  CAS  Google Scholar 

  • Remington DL, Whetten RW, Liu BH, O’Malley DM (1999) Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theor Appl Genet 98(8):1279–1292. doi:10.1007/S001220051194

    Article  PubMed  CAS  Google Scholar 

  • Ren Y, Zhao H, Kou QH, Jiang J, Guo SG, Zhang HY, Hou WJ, Zou XH, Sun HH, Gong GY, Levi A, Xu Y (2012) A High resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PloS ONE 7(1):e29453. doi:10.1371/journal.pone.0029453

    Article  PubMed  CAS  Google Scholar 

  • Sewell MM, Sherman BK, Neale DB (1999) A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three-generation pedigrees. Genetics 151(1):321–330

    Google Scholar 

  • Sewell MM, Bassoni DL, Megraw RA, Wheeler NC, Neale DB (2000) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). I. Physical wood properties. Theor Appl Genet 101(8):1273–1281. doi:10.1007/S001220051607

    Article  CAS  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: Join Map. Plant J 3(5):739–744. doi:10.1111/j.1365-313X.1993.00739.x

    Article  CAS  Google Scholar 

  • Temesgen B, Brown GR, Harry DE, Kinlaw CS, Sewell MM, Neale DB (2001) Genetic mapping of expressed sequence tag polymorphism (ESTP) markers in loblolly pine (Pinus taeda L.). Theor Appl Genet 102(5):664–675. doi:10.1007/S001220051695

    Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313(5793):1596–1604. doi:10.1126/Science.1128691

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res 93(5):343–349. doi:10.1017/S0016672311000279

    Article  Google Scholar 

  • Voorrips R (2002) MapChart: software for the graphical representation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Wang XW, Wang HZ, Wang J, Sun RF, Wu J, Liu SY, Bai YQ, Mun JH, Bancroft I, Cheng F, Huang SW, Li XX, Hua W, Wang JY, Wang XY, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park BS, Weisshaar B, Liu BH, Li B, Liu B, Tong CB, Song C, Duran C, Peng CF, Geng CY, Koh CS, Lin CY, Edwards D, Mu DS, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang HB, Wang HP, Belcram H, Zhou HL, Hirakawa H, Abe H, Guo H, Wang H, Jin HZ, Parkin IAP, Batley J, Kim JS, Just J, Li JW, Xu JH, Deng J, Kim JA, Li JP, Yu JY, Meng JL, Wang JP, Min JM, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao MX, Jin MN, Ramchiary N, Drou N, Berkman PJ, Cai QL, Huang QF, Li RQ, Tabata S, Cheng SF, Zhang S, Zhang SJ, Huang SM, Sato S, Sun SL, Kwon SJ, Choi SR, Lee TH, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li YR, Du YC, Liao YC, Lim Y, Narusaka Y, Wang YP, Wang ZY, Li ZY, Wang ZW, Xiong ZY, Zhang ZH (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43(10):1035–U1157. doi:10.1038/Ng.919

    Article  PubMed  CAS  Google Scholar 

  • Wegrzyn JL, Lee JM, Tearse BR, Neale DB (2008) TreeGenes: a forest tree genome database. Int J Plant Genom 2008:412875. doi:10.1155/2008/412875

    Google Scholar 

  • Zhou Y, Gwaze DP, Reyes-Valdes MH, Bui T, Williams CG (2003) No clustering for linkage map based on low-copy and undermethylated microsatellites. Genome 46(5):809–816. doi:10.1139/G03-062

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Initiative of USDA’s National Institute of Food and Agriculture (grant #2011-67009-30030).

Data archiving statement

All SNP sequence and related SNP calls have been deposited at DiversiTree (https://dendrome.ucdavis.edu/DiversiTree/). All the marker/position information for the consensus map has been submitted and is already publicly available in TreeGenes (https://dendrome.ucdavis.edu/treegenes/). In addition, the Pine Reference Sequence project has just released a preliminary draft for loblolly pine (unpublished data, http://www.pinegenome.org/pinerefseq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Neale.

Additional information

Communicated by: S. Gonzalez-Martinez

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-García, P.J., Stevens, K.A., Wegrzyn, J.L. et al. Combination of multipoint maximum likelihood (MML) and regression mapping algorithms to construct a high-density genetic linkage map for loblolly pine (Pinus taeda L.). Tree Genetics & Genomes 9, 1529–1535 (2013). https://doi.org/10.1007/s11295-013-0646-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-013-0646-4

Keywords

Navigation