Skip to main content
Log in

MetaQTL analysis provides a compendium of genomic loci controlling fruit quality traits in apple

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Fruit quality represents an important aspect of any fruit species, due to its economical importance and direct impact on consumers’ appreciation. In order to generate a compendium about the genomic intervals putatively involved in the control of the several fruit quality components, a Meta-quantitative trait loci (QTL) analysis was performed starting from a QTL mapping survey individually conducted on four full-sib populations. These progenies were simultaneously genotyped with 1289 SNP markers, of which 52 % were in common for at least two maps. The combination of the genotypic and phenotypic datasets allowed the identification of 56 QTLs, which were subsequently projected into a consensus map, reducing the total number of genomic intervals to 27 MetaQTLs. The majority of these regions, associated to fruit quality traits such as fruit skin color and flesh firmness, resulted also consistent with previous reports presented to date to the scientific community. This MetaQTL overview would represents a valuable source for genome anchoring and data mining investigation, suitable for a further in silico identification of relevant causal genes. As example is reported the case of Md-PG1, a gene known to control fruit firmness in apple and retrieved within the confidence interval of a MetaQTL associated to fruit firmness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams DO, Yang SF (1979) Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad 76:170–174

    Article  CAS  Google Scholar 

  • Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53:2039–2055

    Article  CAS  PubMed  Google Scholar 

  • Ballini E, Morel JB, Droc G, Price A, Courtois B, Notteghem JL, Tharreau D (2008) A genome wde meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact 21(7):859–868

    Article  CAS  PubMed  Google Scholar 

  • Barry CS, Giovannoni JJ (2007) Ethylene and fruit ripening. J Plant Growth Regul 26:143–159

    Article  CAS  Google Scholar 

  • Bink MCAM, Jansen J, Madduri M, Voorrips RE, Durel CE, Kouassi AB, Laurens F, Mathis F, Gessler C, Gobbin D, Rezzonico F, Patocchi A, Kellerhals M, Boudichevskaia A, Dunemann F, Peil A, Nowicka A, Lata B, Stankiewicz-Kosyl M, Jeziorek K, Pitera E, Soska A, Tomala K, Evans KM, Fernández-Fernández F, Guerra W, Korbin M, Keller S, Lewandowski M, Plocharski W, Rutkowski K, Zurawicz E, Costa F, Sansavini S, Tartarini S, Komjanc M, Mott D, Antofie A, Lateur M, Rondia A, Gianfranceschi L, van de Weg WE (2014) Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple. Theor Appl Genet. doi:10.1007/s00122-014-2281-3

    PubMed  Google Scholar 

  • Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  CAS  PubMed  Google Scholar 

  • Bourne MC (2002) Food texture and viscosity: concept and measurement, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Calenge F, Faure A, Goerre M, Gebhardt C, Van de Weg WE, Parisi L, Durel E-C (2004) Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94:370–379

    Article  CAS  PubMed  Google Scholar 

  • Cappellin L, Farneti B, Di Guardo M, Busatto N, Khomenko I, Romano A, Velasco R, Costa G, Biasioli F, Costa F (2014) QTL analysis coupled with PTR-ToF-MS and candidate gene based association mapping validate the role of Md-AAT1 as a major gene in the control of flavor in apple. Plant Mol Biol Rep. doi:10.1007/s11105-014-0744-y

    Google Scholar 

  • Chagné D, Carlisle CM, Blond C, Volz RK, Whitworth CJ et al (2007) Mapping a candidate gene (MdMYB10)for red flesh and foliage colour in apple. BMC Genomics 8:212

    Article  PubMed Central  PubMed  Google Scholar 

  • Chagné D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C et al (2014) The draft genome sequencing of European pear (Pyrus communis L. ‘Bartlett’). Plos ONE 9(4):e92644

    Article  PubMed Central  PubMed  Google Scholar 

  • Chagné D, Krieger C, Rassam M, Sullivan M, Fraser J, André C, Pindo M, Troggio M, Gardiner SE, Henry RA, Allan AC, McGhie TK, Laing WA (2012) QTL and candidate gene mapping for polyphenolic composition in apple fruit. BMC Plant Biol 12:12

    Article  PubMed Central  PubMed  Google Scholar 

  • Chagné D, Lin-Wang K, Espley RV, Volz RK, How NM et al (2013) An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol 161:225–239

    Article  PubMed Central  PubMed  Google Scholar 

  • Chang Y, Sun R, Sun H, Zhao Y, Han Y, Chen D, Wang Y, Zhang X, Han Z (2014) Mapping of quantitative trait loci corroborates independent genetic control of apple size and shape. Sci Hortic 174:126–132

    Article  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Costa F, Cappellin L, Farneti B, Tadiello A, Romano A, Soukoulis C, Sansavini S, Velasco R, Biasioli F (2014) Advances in QTL mapping for ethylene production in apple (Malus x domestica Borkh.). Postharvest Biol Technol 87:126–132

    Article  CAS  Google Scholar 

  • Costa F, Cappellin L, Longhi S, Guerra W, Magnago P, Porro D, Soukoulis C, Salvi S, Velasco R, Biasioli F, Gasperi F (2011) Assessment of apple (Malus 9 domestica Borkh.) fruit texture by a combined acoustic-mechanical profiling strategy. Postharvest Biol Technol 61:21–28

    Article  Google Scholar 

  • Costa F, Cappellin L, Fontanari M, Longhi S, Guerra W, Magnago P, Gasperi F, Biasioli F (2012) Texture dynamics during postharvest cold storage ripening in apple (Malus × domestica Borkh.). Postharvest Biol Technol 69:54–63. doi:10.1016/j.postharv bio.2012.03.003

    Article  Google Scholar 

  • Costa F, Peace CP, Stella S, Serra S, Musacchi S, Bazzani M, Sansavini S, Van de Weg WE (2010) QTL dynamics for fruit firmness and softening around an ethylene-dependent polygalacturonase gene in apple (Malus 9 domestica Borkh.). J Exp Bot 11:2029–3039

    Google Scholar 

  • Costa F, Stella S, Van de Weg WE, Guerra W, Cecchinel M, Dallavia J, Koller B, Sansavini S (2005) Role of the genes Md-ACO1 and Md-ACS1 in ethylene production and shelf life of apple (Malus domestica Borkh). Euphytica 141:181–190

    Article  CAS  Google Scholar 

  • Danan S, Veyrieras JB, Lefebre V (2011) Construction of a potato consensus map and QTL meta-analysis offer new insight into the genetic architecture of late blight resistance and plant maturity traits. BMC Plant Biol 11:16

    Article  PubMed Central  PubMed  Google Scholar 

  • Devoghalaere F, Doucen T, Guitton B, Keeling J, Payne W, Ling TJ, Ross JJ, Hallett IC, Gunaseelan K, Dayatilake GA, Diak R, Breen KC, Tustin DS, Costes E, Chagné D, Schaffer RJ, David KM (2012) A genomic approach to understanding the role of auxin in apple (Malus x domestica) fruit size control. BMC Plant Biol 12:7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dunemann F, Ulrich D, Malysheva-Otto L, Weber WE, Longhi S, Velasco R, Costa F (2012) Functional allelic diversity of the apple alcohol acyl-transferase gene MdAAT1 associated with fruit ester volatile contents in apple cultivars. Mol Breeding 29:609–625

    Article  CAS  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S et al (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gardner KM, Brown P, Cooke TF, Cann S, Costa F, Bustamante C, Velasco R, Troggio M, Myles S (2014) Fast and cost-effective genetic mapping in apple using next-generation sequencing. G3 (Bethesda). doi:10.1534/g3.114.011023

  • Gianfranceschi L, Soglio V (2004) The European project HiDRAS: innovative multidisciplinary approaches to breeding high quality disease resistant apples. Acta Horticult 663:327–330

    Google Scholar 

  • Giovannoni JJ (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–49

    Article  CAS  PubMed  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155(1):463–473

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guillon F, Philippe S, Bouchet B, Devaux MF, Frasse P, Jones B, Bouzayen M, Lahaye M (2008) Down-regulation of an auxin response factor in the tomato induces modification of fine pectin structure and tissue architecture. J Exp Bot 59(2):273–288

    Article  CAS  PubMed  Google Scholar 

  • Guitton B, Kelner J-J, Velasco R, Gardiner SE, Chagné D, Costes E (2012) Genetic control of biennial bearing in apple. J Exp Bot 63(1):131–149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo B, Sleper DA, Lu P, Shannon JG, Nguyen HT, Arelli PR (2006) QTLs associated with resistance to soybean cyst nematode in soybean: meta-analysis of QTL locations. Crop Sci 46(2):595–602

    Article  Google Scholar 

  • Hanocq E, Laperche A, Jaminon O, Laine AL, Le Gouis J (2007) Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor Appl Genet 114(3):569–584

    Article  CAS  PubMed  Google Scholar 

  • Hao Z, Li X, Liu X, Xie C, Li M, Zhang D, Zhang S (2010) Meta-analysis of constitutive and adaptive QTL for drought tolerance in maize. Euphytica 174:165–177

    Article  Google Scholar 

  • Harker FR, Gunson FA, Jaeger SR (2003) The case for fruit quality: an interpretive review of consumer attitudes, and preferences for apples. Postharvest Biol Technol 28:333–347

    Article  Google Scholar 

  • Holland JB (2007) Genetic architecture of complex trait in plants. Curr Opin Plant Biol 10:156–61

    Article  CAS  PubMed  Google Scholar 

  • Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jonkers H (1979) Biennial bearing in apple and pear: a literature survey. Sci Hortic 11:303–307

    Article  CAS  Google Scholar 

  • Kellerhals M, Furrer B (1994) Approaches for breeding apples with durable disease resistance. Euphytica 77:31–35

    Article  Google Scholar 

  • Kenis K, Keulemans J, Davey MW (2008) Identification and stability of QTLs for fruit quality traits in apple. Tree Genet Genome 4:647–661

    Article  Google Scholar 

  • Khan MA, Duffy B, Gessler C, Patocchi A (2006) QTL mapping of fire blight resistance in apple. Mol Breed 17:299–306

    Article  Google Scholar 

  • King GJ, Maliepaard C, Lynn JR, Alston FH, Durel CE, Evans KM, Griffon B, Laurens F, Manganaris AG, Schrevens E, Tartarini S, Verhaegh J (2000) Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple (Malus pumila Mill.). Theor Appl Genet 100:1074–1084

    Article  Google Scholar 

  • Kouassi AB, Durel CE, Costa F, Tartarini S, van de Weg E, Evans K, Fernandez-Fernandez F, Govan C, Boudichevskaja A, Dunemann F, Antofie A, Lateur M, Stankiewicz-Kosyl M, Soska A, Tomala K, Lewandowski M, Rutkovski K, Zurawicz E, Guerra W, Lau- rens F (2009) Estimation of genetic parameters and prediction of breeding values for apple fruit-quality traits using pedigreed plant material in Europe. Tree Genet Genomes 5(4):659–672. doi:10.1007/s11295-009-0217-x

    Article  Google Scholar 

  • Kumar S, Chagné D, Bink MCAM, Volz RK, Whitworth C et al (2012) Genomic selection for fruit quality traits in apple (Malus x domestica Borkh.). Plos ONE 7(5):1–10

    Google Scholar 

  • Kumar S, Garrick DJ, Bink MCAM, Whitworth C, Chagné D, Volz RK (2013) Novel genomic approaches unravel genetic architecture of complex traits in apple. BMC Genomics 14:393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar S, Volz RK, Chagné D, Gardiner S (2014) Breeding for apple (Malus × domestica Borkh.) fruit quality traits in the genomics era. Genomics of Plant Genetic Resources pp 387–416.

  • Lacape JM, Llewellyn D, Jacobs J, Arioli T, Becker D, Calhoun S, Al-Ghazi Y, Liu SM, Palai O, Georges S (2010) Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum x G. barbadense RIL population. BMC Plant Biology 10:132

    Article  PubMed Central  PubMed  Google Scholar 

  • Lanaud C, Fouet O, Clement D, Boccara M, Risterucci AM, Surujdeo-Maharaj S, Legavre T, Argout X (2009) A meta-QTL analysis of disease resistance traits of Theobroma cacao L. Mol Breed 24(4):361–374

    Article  Google Scholar 

  • Li JZ, Zhang ZW, Li YL, Wang QL, Zhou YG (2011) QTL consistency and meta-analysis for grain yield components in three generation in maize. Theor Appl Genet 122:771–782

    Article  CAS  PubMed  Google Scholar 

  • Liebhard R, Kellerhals M, Jertmini M, Gessler C (2003a) Mapping quantitative physiological traits in apple (Malus × domestica Borkh.). Plant Mol Biol 52:511–526

    Article  CAS  PubMed  Google Scholar 

  • Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003b) Cre- ating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theor Appl Genet 106:1497–1508

    CAS  PubMed  Google Scholar 

  • Longhi S, Cappellin L, Guerra W, Costa F (2013a) Validation of a functional molecular marker suitable for marker-assisted breeding for fruit texture in apple (Malus 3 domestica Borkh.). Mol Breeding 32:841–852

    Article  CAS  Google Scholar 

  • Longhi S, Hamblin MT, Trainotti L, Peace CP, Velasco R, Costa F (2013b) A candidate gene based approach validates Md-PG1 as the main responsible for a QTL impacting fruit texture in apple (Malus 9 domestica Borkh.). BMC Plant Biol 13:37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Longhi S, Moretto M, Viola R, Velasco R, Costa F (2012) Comprehensive QTL mapping survey dissects the complex fruit texture physiology in apple (Malus × domestica Borkh.). J Exp Bot 63:1107–1121

    Article  CAS  PubMed  Google Scholar 

  • Maliepaard C, Alston FH, Van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, Van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink- van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73

    Article  CAS  Google Scholar 

  • Maliepaard C, Sillanpaa MJ, van Ooijen JW, Jansen RC, Arjas E (2001) Bayesian versus frequentist analysis of multiple quantitative trait loci with an application to an outbred apple cross. Theor Appl Genet 103:1243–1253

    Article  CAS  Google Scholar 

  • Marandel G, Salava J, Abbott A, Candresse T, Decroocq V (2009) Quantitative trait loci meta-analysis of Plum pox virus resistance in apricot (Prunus armeniaca L.): new insights on the organization and the identification of genomic resistance factors. Mol Plant Pathol 10(3):347–360

    Article  CAS  PubMed  Google Scholar 

  • Monselise S, Goldschmidt E (1982) Alternate bearing in fruit trees. Hortic Rev 4:128–173

    Google Scholar 

  • Paterson AH (1998) Molecular dissection of complex traits. CRC, Boca Raton, FL

    Google Scholar 

  • Patocchi A, Fernandez-Fernandez F, Evans K, Gobbin D, Re- zzonico F, Boudichevskaia A, Dunemann F, Stankiewicz- Kosyl M, Mathis-Jeanneteau F, Durel CE, Gianfranceschi L, Costa F, Toller C, Cova V, Mott D, Komjanc M, Barbaro E, Kodde L, Rikkerink E, Gessler C, van de Weg WE (2009) Development and test of 21 multiplex PCRs com- posed of SSRs spanning most of the apple genome. Tree Genet Genomes 5:211–223

    Article  Google Scholar 

  • Pindo M, Vezzulli S, Coppola G, Cartwright DA, Zharkikh A, Velasco R, Troggio M (2008) SNP high-throughput screening in grapevine using the SNPlexTM genotyping system. BMC Plant Biol 8:12

    Article  PubMed Central  PubMed  Google Scholar 

  • Quraishi UM, Murat F, Abrouk M, Pont C, Confolent C, Oury FX, Ward J, Boros D, Gebruers K, Delcour JA et al (2011) Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Funct Integr Genom 11:71–83

    Article  CAS  Google Scholar 

  • Sansavini S, Donati F, Costa F, Tartarini T (2004) Advances in apple breeding for enhanced fruit quality and resistance to biotic tresses: new varieties for the European market. J Fruit Ornamental Plant Res 12:13–51

    Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–U151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sosnowski O, Charcosset A, Joets J (2012) BioMercator V3: an upgrade of genetic map compilation and QTL meta-analysis algorithms. Bioinformatics 28:2082–2083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Swamy BPM, Vikram P, Dixit S, Ahmed HU, Kumar A (2011) Meta-analysis of grain yield QTL identified during agricultural drought in grasses showed consensus. BMC Genomics 12:16

    Article  Google Scholar 

  • Telias A, Lin-Wang K, Stevenson DE, Cooney JM, Hellens RP, Allan AC, Hoover EE, Bradeen JM (2011) Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biol 11:93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Truntzler M, BarriAre Y, Sawkins MC, Lespinasse D, Betran J, Charcosset A, Moreau L (2010) Meta-analysis of QTL involved in silage quality of maize and comparison with the position of candidate genes. Theor Appl Genet 121:1465–1482

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma, B.V., Wageningen, Netherlands

    Google Scholar 

  • Van Ooijen JW (2009) MAPQTL® 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma, B.V., Wageningen, Netherlands

    Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  CAS  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S, Jung S, Shu S et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494

    Article  CAS  PubMed  Google Scholar 

  • Veyrieras JB, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinforma 8:49

    Article  Google Scholar 

  • Visser T (1964) Juvenile phase and growth of apple and pear seedlings. Euphytica 13:119–129

    Google Scholar 

  • Voorrips RE (2001) MapChart version 2.0: Windows software for the graphical presentation of linkage maps and QTLs. Plant Research International, Wageningen, The Netherlands

  • Voorrips RE, Bink MCAM, van de Weg WE (2012) Pedimap: software for the visualization of genetic and phenotypic data in pedigrees. J Hered 103(6):903–907

    Article  PubMed Central  PubMed  Google Scholar 

  • Xiang K, Reid LM, Zhang Z, Zhu X, Pan G (2012) Characterization of correlation between grain moisture and ear rot resistance in maize by QTL meta-analysis. Euphytica 183:185–195

    Article  CAS  Google Scholar 

  • Xiang K, Zhang ZM, Reid LM, Zhu XY, Yuan GS, Pan GT (2010) A meta-analysis of QTL associated with ear rot resistance in maize. Maydica 55:281–290

    Google Scholar 

  • Yamagishi N, Kishigami R, Yoshikawa N (2014) Reduced generation time of apple seedlings to within a year by means of a plant virus vector: a new plant-breeding technique with no transmission of genetic modification to the next generation. Plant Biotechnol J 12:60–68

    Article  CAS  PubMed  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

  • Young ND (1999) A cautiously optimistic vision for marker-assisted breeding. Mol Breed 5:505–510

    Article  Google Scholar 

  • Zhu Y, Barritt BH (2008) Md-ACS1 and Md-ACO1 genotyping of apple (Malus x domestica Borkh) breeding parents and suitability for marker-assisted selection. Tree Genet Genome 4:555–562

Download references

Acknowledgments

This research was supported by the post-Doc project CANDI-HAP founded by the Autonomous Province of Trento. The author wants to thank also Pierluigi Magnago and his team for plant maintenance, Livio Fadanelli for apple storage, and Massimo Pindo for the SNP genotyping facility.

Data Archiving Statement

Information about the SNP markers used in this work are available at the Genome Database for Rosaceae (GDR: www.rosaceae.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Costa.

Additional information

Communicated by E. Dirlewanger

Electronic supplementary material

Below is the link to the electronic supplementary material.

Suppl. Fig. 1

Trait distribution for fruit weight (panel B, D, F, H) and fruit firmness at harvest (panel A; C; E; G) assessed for the four populations: ‘FD’ (A and B panel), ‘FPL’ (C and D), ‘GDS’ (E and F) and ‘GDB’ (G and H). For each panel, the y-axes indicate the number of observations. The x-axes reports, instead, the kgcm−2 and the g for fruit firmness and weight, respectively. On each distribution the position of the parental cultivars is shown by arrows, while the black line indicates the best-fit line (DOC 46 kb)

Suppl. Fig. 2

Genetic alignment between the four individual maps (‘FD’, ‘FPL’ ‘GDS’ and ‘GDB’) and the consensus (CONS). In the figure the comparison of LG 3, 6, 11 and 16 is shown (PPT 158 kb)

Suppl. Fig. 3

QTL mapping confidence interval of ‘Fuji’ x ‘Delearly’ (‘FD’) (PPT 315 kb)

Suppl. Fig. 4

QTL mapping confidence interval of ‘Fuji’ x ‘Cripps Pink’ (‘FPL’) (PPT 100 kb)

Suppl. Fig. 5

QTL mapping confidence interval of ‘Golden Delicious’ x ‘Scarlet’ (‘GDS’) (PPT 123 kb)

Suppl. Fig. 6

QTL mapping confidence interval of ‘Golden Delicious’ x ‘Braeburn’ (‘GDB’) (PPT 110 kb)

Suppl. Table 1

QTL mapping survey for the ‘Fuji’ x ‘Delearly’ population. For each trait the linkage groups where the QTL was identified (LG), the LOD value (LOD), the percentage of variance explained by the QTL (R2) and the marker close to the QTL peak (Marker) is reported (DOCX 55 kb)

Suppl. Table 2

QTL mapping survey for the ‘Fuji’ x ‘Cripps Pink’ population. The description of the table is the same as for Suppl. Table 1 (DOCX 49 kb)

Suppl. Table 3

QTL mapping survey for the ‘Golden Delicious’ x ‘Scarlet’ population. The description of the table is the same as for Suppl. Table 1 (DOCX 51 kb)

Suppl. Table 4

QTL mapping survey for the ‘Golden Delicious’ x ‘Braeburn’ population. The description of the table is the same as for Suppl. Table 1. (DOCX 388 kb)

Suppl. Table 5

QTL model computed in order to define the number of MetaQTL per each LG (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, F. MetaQTL analysis provides a compendium of genomic loci controlling fruit quality traits in apple. Tree Genetics & Genomes 11, 819 (2015). https://doi.org/10.1007/s11295-014-0819-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-014-0819-9

Keywords

Navigation