Skip to main content
Log in

Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.)

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Grain dietary fiber content in wheat not only affects its end use and technological properties including milling, baking and animal feed but is also of great importance for health benefits. In this study, integration of association genetics (seven detected loci on chromosomes 1B, 3A, 3D, 5B, 6B, 7A, 7B) and meta-QTL (three consensus QTL on chromosomes 1B, 3D and 6B) analyses allowed the identification of seven chromosomal regions underlying grain dietary fiber content in bread wheat. Based either on a diversity panel or on bi-parental populations, we clearly demonstrate that this trait is mainly driven by a major locus located on chromosome 1B associated with a log of p value >13 and a LOD score >8, respectively. In parallel, we identified 73 genes differentially expressed during the grain development and between genotypes with contrasting grain fiber contents. Integration of quantitative genetics and transcriptomic data allowed us to propose a short list of candidate genes that are conserved in the rice, sorghum and Brachypodium chromosome regions orthologous to the seven wheat grain fiber content QTL and that can be considered as major candidate genes for future improvement of the grain dietary fiber content in bread wheat breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrouk M, Murat F, Pont C, Messing J, Jackson S, Faraut T, Tannier E, Plomion C, Cooke R, Feuillet C, Salse J (2010) Paleogenomics of Plants: Modern Species Synteny-Based Modelling of Extinct Ancestors. Trends in Plant Science. doi:10.1016/j.tplants.2010.06.001

  • Adam A, Levrat-Verny MA, Lopez HW, Leuillet M, Demigne C, Remesy C (2001) Whole wheat and triticale flours with differing viscosities stimulate cecal fermentations and lower plasma and hepatic lipids in rats. J Nutr 131:1770–1776

    PubMed  CAS  Google Scholar 

  • Adam A, Lopez HW, Leuillet M, Demigne C, Remesy C (2003) Whole wheat flour exerts cholesterol-lowering in rats in its native form and after use in bread-making. Food Chem 80:337–344

    Article  CAS  Google Scholar 

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang SY, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Amrein TM, Granicher P, Arrigoni E, Amado R (2003) In vitro digestibility and colonic fermentability of aleurone isolated from wheat bran. Lebensm Wiss Technol 36:451–460

    Article  CAS  Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  PubMed  CAS  Google Scholar 

  • Bailey PC, McKibbin RS, Lenton JR, Holdsworth MJ, Flintham JE, Gale MD (1999) Genetic map locations for orthologous Vp1 genes in wheat and rice. Theor Appl Genet 98:281–284

    Article  CAS  Google Scholar 

  • Barrière Y, Méchin V, Lafarguette F, Manicacci D, Guillon F, Wang H, Lauressergues D, Pichon M, Bosio M, Tatout C (2009) Toward the discovery of maize cell wall genes involved in silage quality and capacity to biofuel production. Maydica 54:161–198

    Google Scholar 

  • Bolot S, Abrouk M, Masood-Quraishi U, Stein N, Messing J, Feuillet C, Salse J (2009) The 'inner circle' of the cereal genomes. Curr Opin Plant Biol 12:119–125

    Article  PubMed  CAS  Google Scholar 

  • Breseghello F, Sorrells ME (2006a) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2006b) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46:1323–1330

    Article  Google Scholar 

  • Carré B, Gomez J, Melcion JP, Giboulot B (1994) La viscosité des aliments destinés à l’aviculture. Utilisation pour prédire la consommation et l’excrétion d’eau. INRA Prod Anim 7(5):369–379

    Google Scholar 

  • Charbonneau E, Pellerin D, Oetzel GR (2006) Impact of lowering dietary cation–anion difference in nonlactating dairy cows: a meta-analysis. J Dairy Sci 89:537–548

    Article  PubMed  CAS  Google Scholar 

  • Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168:2169–2185

    Article  PubMed  CAS  Google Scholar 

  • Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Huckelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977

    Article  PubMed  CAS  Google Scholar 

  • Courtin CM, Delcour JA (2002) Arabinoxylans and endoxylanases in wheat flour bread-making. J Cereal Sci 35:225–243

    Article  CAS  Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  PubMed  CAS  Google Scholar 

  • Dornez E, Gebruers K, Joye IJ, De Ketelaere B, Lenartz J, Massaux C, Bodson B, Delcour JA, Courtin CM (2008) Effects of genotype, harvest year and genotype-by-harvest year interactions on arabinoxylan, endoxylanase activity and endoxylanase inhibitor levels in wheat kernels. J Cereal Sci 47:180–189

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Fincher GB, Stone BA (1986) Cell wall and their component in cereal grain technology. Adv Cereal Sci Technol 8:207–295

    CAS  Google Scholar 

  • Gebruers K, Dornez E, Boros D, Fras A, Dynkowska W, Bedo Z, Rakszegi M, Delcour JA, Courtin CM (2008) Variation in the content of dietary fiber and components thereof in wheats in the HEALTHGRAIN diversity screen. J Agric Food Chem 56:9740–9749

    Article  PubMed  CAS  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    PubMed  CAS  Google Scholar 

  • Gottwald S, Stein N, Borner A, Sasaki T, Graner A (2004) The gibberellic-acid insensitive dwarfing gene sdw3 of barley is located on chromosome 2HS in a region that shows high colinearity with rice chromosome 7 L. Mol Genet Genomics 271:426–436

    Article  PubMed  CAS  Google Scholar 

  • Griffiths S, Dunford RP, Coupland G, Laurie DA (2003) The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol 131:1855–1867

    Article  PubMed  CAS  Google Scholar 

  • Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752

    Article  PubMed  CAS  Google Scholar 

  • Guillon F, Champ M (2000) Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Res Int 33:233–245

    Article  Google Scholar 

  • Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485

    Article  PubMed  CAS  Google Scholar 

  • Hanocq E, Laperche A, Jaminon O, Laine AL, Le Gouis J (2007) Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor Appl Genet 114:569–584

    Article  PubMed  CAS  Google Scholar 

  • Harris PJ, Chavan RR, Ferguson LR (2005) Production and characterisation of two wheat-bran fractions: an aleurone-rich and a pericarp-rich fraction. Mol Nutr Food Res 49:536–545

    Article  PubMed  Google Scholar 

  • Heijmans BT, Beekman M, Putter H, Lakenberg N, van der Wijk HJ, Whitfield JB, Posthuma D, Pedersen NL, Martin NG, Boomsma DI, Slagboom PE (2005) Meta-analysis of four new genome scans for lipid parameters and analysis of positional candidates in positive linkage regions. Eur J Hum Genet 13:1143–1153

    Article  PubMed  CAS  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:E25

    Article  PubMed  CAS  Google Scholar 

  • Jamet E, Canut H, Boudart G, Pont-Lezica RF (2006) Cell wall proteins: a new insight through proteomics. Trends Plant Sci 11:33–39

    Article  PubMed  CAS  Google Scholar 

  • Keightley PD (1998) Inference of genome-wide mutation rates and distributions of mutation effects for fitness traits: a simulation study. Genetics 150:1283–1293

    PubMed  CAS  Google Scholar 

  • Khatkar MS, Thomson PC, Tammen I, Raadsma HW (2004) Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genet Sel Evol 36:163–190

    Article  PubMed  CAS  Google Scholar 

  • Kraakman ATW, Niks RE, Van den Berg P, Stam P, Van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446

    Article  PubMed  CAS  Google Scholar 

  • Laperche A, Brancourt-Hulmel M, Heumez E, Gardet O, Hanocq E, Devienne-Barret F, Le Gouis J (2007) Using genotype × nitrogen interaction variables to evaluate the QTL involved in wheat tolerance to nitrogen constraints. Theor Appl Genet 115:399–415

    Article  PubMed  CAS  Google Scholar 

  • Lawlor DA, Owen CG, Davies AA, Whincup PH, Ebrahim S, Cook DG, Smith GD (2006) Sex differences in the association between birth weight and total cholesterol. A meta-analysis. Ann Epidemiol 16:19–25

    Article  PubMed  Google Scholar 

  • Lean IJ, DeGaris PJ, McNeil DM, Block E (2006) Hypocalcemia in dairy cows: meta-analysis and dietary cation anion difference theory revisited. J Dairy Sci 89:669–684

    Article  PubMed  CAS  Google Scholar 

  • Leister D, Kurth J, Laurie DA, Yano M, Sasaki T, Devos K, Graner A, Schulze-Lefert P (1998) Rapid reorganization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci USA 95:370–375

    Article  PubMed  CAS  Google Scholar 

  • Lin YR, Schertz KF, Paterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141:391–411

    PubMed  CAS  Google Scholar 

  • Lincoln SE, Daly EM, Lander ES (1993) Constructing genetic linkage maps with MAPMAKER/EXP Version 3.0: a tutorial and reference manual, 3rd edn. Whitehead Institute, Cambridge, MA

    Google Scholar 

  • Liu WM, Mei R, Di X, Ryder TB, Hubbell E, Dee S, Webster TA, Harrington CA, Ho MH, Baid J, Smeekens SP (2002) Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics 18(12):1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Lopez HW, Levrat MA, Guy C, Messager A, Demigne C, Remesy C (1999) Effects of soluble corn bran arabinoxylans on cecal digestion, lipid metabolism, and mineral balance (Ca, Mg) in rats. J Nutr Biochem 10:500–509

    Article  PubMed  CAS  Google Scholar 

  • Lu ZX, Gibson PR, Muir JG, Fielding M, O'Dea K (2000) Arabinoxylan fiber from a by-product of wheat flour processing behaves physiologically like a soluble, fermentable fiber in the large bowel of rats. J Nutr 130:1984–1990

    PubMed  CAS  Google Scholar 

  • Lu ZX, Walker KZ, Muir JG, O'Dea K (2004) Arabinoxylan fibre improves metabolic control in people with Type II diabetes. Eur J Clin Nutr 58:621–628

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Ritland K (1999) Estimation of pairwise relatedness with molecular markers. Genetics 152:1753–1766

    PubMed  CAS  Google Scholar 

  • MacLeod IM, Robinson NA, Goddard ME (2003) A consensus map of quantitative trait loci (QTL) affecting milk production. 50 years of DNA: proceedings of the Fifteenth Conference. Association for the Advancement of Animal Breeding and Genetics, Melbourne, Australia, pp 22–26, 7-11 July 2003

    Google Scholar 

  • Martinant JP, Cadalen T, Billot A, Chartier S, Leroy P, Bernard M, Saulnier L, Branlard G (1998) Genetic analysis of water extractable arabinoxylans in bread wheat endosperm. Theor Appl Genet 97:1069–1075

    Article  CAS  Google Scholar 

  • Nicot N, Chiquet V, Gandon B, Amilhat L, Legeai F, Leroy P, Bernard M, Sourdille P (2004) Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor Appl Genet 109:800–805

    Article  PubMed  CAS  Google Scholar 

  • Oury FX, Carre B, Pluchard P, Berard P, Nys Y, Leclercq B (1998) Genetic variability and stability of poultry feeding related characters in wheat, in relation to environmental variation. Agronomie 18:139–150

    Article  Google Scholar 

  • Paterson AH, Lin YR, Li ZK, Schertz KF, Doebley JF, Pinson SRM, Liu SC, Stansel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718

    Article  PubMed  CAS  Google Scholar 

  • Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. PLoS Genet 2:2074–2093

    Article  CAS  Google Scholar 

  • Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) 'Green revolution' genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  PubMed  CAS  Google Scholar 

  • Penning BW, Hunter CT 3rd, Tayengwa R, Eveland AL, Dugard CK, Olek AT, Vermerris W, Koch KE, McCarty DR, Davis MF, Thomas SR, McCann MC, Carpita NC (2009) Genetic resources for maize cell wall biology. Plant Physiol 151(4):1703–1728

    Article  PubMed  CAS  Google Scholar 

  • Perretant MR, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, Tixier MH, Branlard G, Bernard S, Bernard M (2000) QTL analysis of bread-making quality in wheat using a doubled haploid population. Theor Appl Genet 100:1167–1175

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Quraishi UM, Abrouk M, Bolot S, Pont C, Throude M, Guilhot N, Confolent C, Bortolini F, Praud S, Murigneux A, Charmet G, Salse J (2009) Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct Integr Genomics 9(4):473–484

    Article  PubMed  CAS  Google Scholar 

  • Rice T, Cooper RS, Wu XD, Bouchard C, Rankinen T, Rao DC, Jaquish CE, Fabsitz RR, Province MA (2006) Meta-analysis of genome-wide scans for blood pressure in African-American and Nigerian samples. The National Heart, Lung, and Blood Institute GeneLink Project. Am J Hypertens 19:270–274

    Article  PubMed  Google Scholar 

  • Rothschild MF, Soller M (1997) Candidate gene analysis to detect genes controlling traits of economic importance in domestic livestock. Probe 8:13–20

    Google Scholar 

  • Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM, Calcagno T, Cooke R, Delseny M, Feuillet C (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20:11–24

    Article  PubMed  CAS  Google Scholar 

  • Salse J, Abrouk M, Bolot S, Guilhot N, Courcelle E, Faraut T, Waugh R, Close TJ, Messing J, Feuillet C (2009a) Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. Proc Natl Acad Sci USA 106:14908–14913

    Article  PubMed  CAS  Google Scholar 

  • Salse J, Abrouk M, Murat F, Masood Quraishi U, Feuillet C (2009b) Improved criteria and comparative genomics tool provide new insights into grass paleogenomics. Brief Bioinform 10(6):619–630

    Article  PubMed  CAS  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    Article  PubMed  CAS  Google Scholar 

  • Saulnier L, Peneau N, Thibault JF (1995) Variability in grain extract viscosity and water-soluble arabinoxylan content in wheat. J Cereal Sci 22:259–264

    Article  CAS  Google Scholar 

  • Saulnier L, Sado PE, Branlard G, Charmet G, Guillon F (2007) Wheat arabinoxylans: exploiting variation in amount and composition to develop enhanced varieties. J Cereal Sci 46:261–281

    Article  CAS  Google Scholar 

  • Sutton T, Whitford R, Baumann U, Dong CM, Able JA, Langridge P (2003) The Ph2 pairing homoeologous locus of wheat (Triticum aestivum): identification of candidate meiotic genes using a comparative genetics approach. Plant J 36:443–456

    Article  PubMed  CAS  Google Scholar 

  • Sutton T, Baumann U, Hayes J, Collins NC, Shi BJ, Schnurbusch T, Hay A, Mayo G, Pallotta M, Tester M, Langridge P (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318:1446–1449

    Article  PubMed  CAS  Google Scholar 

  • Throude M, Bolot S, Bosio M, Pont C, Sarda X, Quraishi UM, Bourgis F, Lessard P, Rogowsky P, Ghesquiere A, Murigneux A, Charmet G, Perez P, Salse J (2009) Structure and expression analysis of rice paleo duplications. Nucleic Acids Res 37:1248–1259

    Article  PubMed  CAS  Google Scholar 

  • Topping D (2007) Cereal complex carbohydrates and their contribution to human health. J Cereal Sci 46:220–229

    Article  CAS  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    Article  PubMed  CAS  Google Scholar 

  • Veyrieras JB, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinform 8:49

    Article  Google Scholar 

  • Wan Y, Poole RL, Huttly AK, Toscano-Underwood C, Feeney K, Welham S, Gooding MJ, Mills C, Edwards KJ, Shewry PR, Mitchell RAC (2008) Transcriptome analysis of grain development in hexaploid wheat. BMC Genomics 9:121

    Article  PubMed  Google Scholar 

  • Ward JL, Poutanen K, Gebruers K, Piironen V, Lampi AM, Nystrom L, Andersson AAM, Aman P, Boros D, Rakszegi M, Bedo Z, Shewry PR (2008) The HEALTHGRAIN cereal diversity screen: concept, results, and prospects. J Agric Food Chem 56:9699–9709

    Article  PubMed  CAS  Google Scholar 

  • Wood PJ (2007) Cereal beta-glucans in diet and health. J Cereal Sci 46:230–238

    Article  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

  • Yan LL, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    Article  PubMed  CAS  Google Scholar 

  • Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Data presented in the current article including meta-QTL analysis, association genetics study were generated within programs partially funded by the European, 6th Framework Program ‘HEALTHGRAIN’ (FOOD-CT-2005-514008)). The analysis of the synteny between wheat, rice, Brachypodium, and sorghum genomes was funded by grants from the Agence Nationale de la Recherche (Program ANRjc-PaleoCereal, ref: ANR-09-JCJC-0058-01). The data regarding the synteny-based dissection of the major grain fiber content locus on the bread wheat chromosome 1B was funded by the European program 7th Framework Program ‘TRITICEAE GENOME’ (under the grant agreement FP7-212019). This paper reflects the authors’ views and the Community is not liable for any use that may be made of the information contained in this publication. Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council of the UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome Salse.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Figure S1

Comparative analysis of meta-QTL and association genetics approaches for the grain dietary fiber content characterization in bread wheat (PDF 4.93 mb)

Figure S2

Description of the graphical method allowing the detection of the true number of groups K (PDF 23.9 kb)

Figure S3

Representation of four identified groups and their origins in the diversity panel (PDF 29.6 kb)

Figure S4

Decay LD plot representation (PDF 148 kb)

Table S1

Phenotypic variation in R6 X C7 and V X I (PDF 20.4 kb)

Table S2

12 QTL detected in different genetic population (PDF 21.8 kb)

Table S3

Meta-QTL characterization (PDF 17.9 kb)

Table S4

DArTs markers, related positions and associated p value on seven chromosomal regions associated with different dietary fiber trait components (PDF 26.9 kb)

Table S5

73 differentially expressed wheat genes with their corresponding orthologs in rice, sorghum and Brachypodium genomes (PDF 36.6 kb)

Table S6

List of COS markers (PDF 23.1 kb)

Table S7

List of candidate genes identified in the rice, Brachypodium, sorghum orthologous regions (PDF 53.9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quraishi, U.M., Murat, F., Abrouk, M. et al. Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Funct Integr Genomics 11, 71–83 (2011). https://doi.org/10.1007/s10142-010-0183-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-010-0183-2

Keywords

Navigation