Skip to main content
Log in

Computational predictions and expression patterns of conserved microRNAs in loblolly pine (Pinus taeda)

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

MiRNAs are mostly known for their expressions in sporophytic (diploid) tissues from various angiosperms, and only limited information is available on those expressed in gametophytic (haploid) tissues. Even more limited information is available for gymnosperms, particularly those that are expressed in gametophytic tissues. Homology search of the loblolly pine expressed sequence tag (EST) database using known miRNAs from Arabidopsis thaliana and Picea abies revealed 12 miRNAs previously unreported and/or uncharacterized in loblolly pine (Pinus taeda). Their precursor and mature sequences and secondary structures were obtained using computational approaches. PCR was used to confirm their expressions using samples that represent the sporophyte (i.e., needles) and gametophyte (i.e., mature and germinated pollen) phases of the loblolly pine life cycle. Our results showed that all 12 miRNAs were expressed in the needles, three of which were detected only in the needles, two were expressed only in the needles and germinated pollen, and seven were expressed in all of the three tissues examined. None was expressed only in the mature and germinated pollen, but nine had expressions in both or either of these samples. Target predictions suggest that these newly identified and characterized loblolly pine miRNAs regulate messenger RNAs (mRNAs) that are involved in gene regulation, metabolism, and signal transduction. This study demonstrates the usefulness of computational approach in identifying conserved miRNAs in species with unsequenced genomes like loblolly pine and reveals that conserved miRNAs can be used to differentiate sporophytic and gametophytic tissues and between stages of the male gametophyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alberts SM, Sonntag C, Schafer A, Wolf DH (2009) UBX4 modulates CDC48 activity and influences degradation of misfolded proteins of the endoplasmic reticulum. J Biol Chem 284:16082–16089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alonso-Peral MM, Sun C, Millar AA (2012) MicroRNA159 can act as a switch or tuning microRNA independently of its abundance in Arabidopsis. Plos One 7:e34751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Ambros V, Bartel B, Bartel D, Burge CB, Carrington JC, Chen XM, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003) A uniform system for microRNA annotation. RNA 9:277–279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ariel FD, Manavella PA, Dezar CA, Chan RL (2007) The true story of the HD-Zip family. Trends Plant Sci 12:419–426

    Article  CAS  PubMed  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17:1658–1673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Axtell MJ, Bowman JL (2008) Evolution of plant microRNAs and their targets. Trends Plant Sci 13:343–349

    Article  CAS  PubMed  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Brown G, Kadel EI, Bassoni D, Kiehne K, Temesgen B, van Buijtenen J, Sewell M, Marshall K, Neale DB (2001) Anchored reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomes. Genetics 159:799–809

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carlsbecker A, Lee J-Y, Roberts CJ, Dettmer J, Lehesranta S, Zhou J, Lindgren O, Moreno-Risueno MA, Vaten A, Thitamadee S, Campilho A, Sebastian J, Bowman JL, Helariutta Y, Benfey PN (2010) Cell signaling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chambers C, Shuai B (2009) Profiling microRNA expression in Arabidopsis pollen using microRNA array and real-time PCR. BMC Plant Biol 9:87

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen CC (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44

    Article  PubMed  Google Scholar 

  • Connor R, Hartsell A (2002) Forest area and conditions. In: Wear D, Gries J (eds) Southern Forest Resource Assessment. Gen. Tech. Rep. SRS-53. USDA Forest Service, Asheville, pp 357–401

    Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acid Res 39:W155–W159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dolferus R, De Bruxelles G, Dennis ES, Peacock WJ (1994) Regulation of the Arabidopsis Adh gene by anaerobic and other environmental stresses. Ann Bot 74:301–308

    Article  CAS  Google Scholar 

  • Dolgosheina EV, Morin RD, Aksay G (2008) Conifers have a unique small RNA silencing signature. RNA 14:1508–1515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elhiti M, Stasolla C (2009) Structure and function of homeodomain-leucine zipper (HD-Zip) proteins. Plant Signal Behav 4:86–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan S, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2:e219

    Article  PubMed Central  PubMed  Google Scholar 

  • Fernando DD, Owens JN, von Aderkas P, Takaso T (1997) In vitro pollen tube growth and penetration of female gametophytes in Douglas fir (Pseudotsuga menziesii). Sex Plant Reprod 10:209–216

    Article  Google Scholar 

  • Fernando DD, Lazzaro MD, Owens JN (2005) Growth and development of conifer pollen tubes. Sex Plant Reprod 18:149–162

    Article  Google Scholar 

  • Fernando DD, Quinn CR, Brenner ED, Owens JN (2010) Male gametophyte development and evolution in extant gymnosperms. Int J Plant Dev Biol 4:47–63

    Google Scholar 

  • Floyd SK, Bowman JL (2004) Gene regulation: ancient microRNA target sequences in plants. Nature 428:485–486

    Article  CAS  PubMed  Google Scholar 

  • Frazier TP, Zhang B (2011) Identification of plant microRNAs using expressed sequence tag analysis. Methods Mol Biol 678:13–25

    Article  CAS  PubMed  Google Scholar 

  • Frederick WJ, Lien S, Couchene C, Demartini N, Ragauskas A, Iisa K (2008) Production of ethanol from carbohydrates from loblolly pine: a technical and economic assessment. Bioresour Technol 99:5051–5057

    Article  CAS  PubMed  Google Scholar 

  • Gifford EM, Foster AS (1989) Morphology and evolution of vascular plants. W. H. Freedman and Company, New York, 626 pp

  • Gough C, Seiler J (2004) Below ground carbon dynamics in loblolly pine (Pinus taeda) immediately following diammonium phosphate fertilization. Tree Physiol 24:845–851

    Article  CAS  PubMed  Google Scholar 

  • Grant-Downton R, Hafidh S, Twell D, Dickinson HG (2009a) Small RNA pathways are present and functional in the angiosperm male gametophyte. Mol Plant 2:500–512

    Article  CAS  PubMed  Google Scholar 

  • Grant-Downton R, Le Trionnaire G, Schmid R, Rodriguez-Enriquez J, Hafidh S, Mehdi S, Twell D, Dickinson H (2009b) MicroRNA and tasiRNA diversity in mature pollen of Arabidopsis thaliana. BMC Genomics 10:643

    Article  PubMed Central  PubMed  Google Scholar 

  • Hamilton A, Voinnet O, Chappell L, Baulcombe D (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21:4671–4679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Henderson IR, Zhang XY, Lu C, Johnson L, Meyers BC, Green PJ, Jacobsen SE (2006) Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet 38:721–725

    Article  CAS  PubMed  Google Scholar 

  • Hofacker IL, Fontana W, Stadler PF, Bonhoeffec S, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatsh Chem 125:167–188

    Article  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  CAS  PubMed  Google Scholar 

  • Krutovsky K, Troggio M, Brown G, Jermstad K, Neale DB (2004) Comparative mapping in the Pinaceae. Genetics 168:447–461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Le Trionnaire G, Twell D (2010) Small RNAs in angiosperm gametophytes: from epigenetics to gamete development. Genes Dev 24:1081–1085

    Article  PubMed Central  PubMed  Google Scholar 

  • Le Trionnaire G, Grant-Downton R, Kourmpetli S, Dickinson H, Twell D (2011) Small RNA activity and function in angiosperm gametophytes. J Exp Bot 62:1601–1610

    Article  PubMed  Google Scholar 

  • Lu S, Sun YH, Amerson H, Chiang VL (2007) MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51:1077–1098

    Article  CAS  PubMed  Google Scholar 

  • Mishra AK, Lobiyal DK (2011) MiRNA prediction using computational approach. Adv Exp Med Biol 696:75–82

    Article  CAS  PubMed  Google Scholar 

  • Morin RD, Askay G, Dolgosheina D, Ebhardt HA, Magrinio V, Mardiso ER, Cenk Sahinalp SC, Unrau PJ (2008) Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Res 18:571–584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neale DB, Wheeler N (2004) The Loblolly Pine Genome Project. http://dendrome.ucdavis.edu/NealeLab/lpgp/pdf/prospectus.pdf

  • Oh TJ, Wartell RM, Cairney J, Pullman GS (2008) Evidence for stage-specific modulation of specific microRNAs (miRNAs) and miRNA processing components in zygotic embryo and female gametophyte of loblolly pine (Pinus taeda). New Phytol 179:67–80

    Article  CAS  PubMed  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87

    Article  CAS  PubMed  Google Scholar 

  • Perlack R, Wright L, Turhollow A, Graham R, Stokes B, Erbach D (2005) Biomass as a feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Biomass Program Overview. US Department of Energy/US Department of Agriculture

  • Prestemon J, Abt R (2002) Timber products supply and demand. In: Wear D, Gries J (eds) Southern Forest Resource Assessment. Gen. Tech. Rep. SRS-53. USDA Forest Service, Asheville, pp 299–326

    Google Scholar 

  • Qiu DY, Pan XP, Wilson IW, Li FL, Liu M, Teng WJ, Zhang BH (2009) High throughput sequencing technology reveals that the taxoid elicitor methyl jasmonate regulates microRNA expression in Chinese yew (Taxus chinensis). Gene 436:37–44

    Article  CAS  PubMed  Google Scholar 

  • Quinn CR, Iriyama I, Fernando DD (2014) Expression patterns of conserved microRNAs in the male gametophyte of loblolly pine (Pinus taeda). Plant Reprod 27:69–78

    Article  CAS  PubMed  Google Scholar 

  • Rancour DM, Park S, Knight SD, Bednarek SY (2004) Plant UBX domain-containing protein 1, PUX1, regulates the oligomeric structure and activity of Arabidopsis CDC48. J Biol Chem 279:54264–54274

    Article  CAS  PubMed  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel D (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  CAS  PubMed  Google Scholar 

  • Richardson D, Rundel P (1998) Ecology and biogeography of Pinus: an introduction. In: Richardson D (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge

    Google Scholar 

  • Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P (2008) The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol 67:183–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sieber P, Wellmer F, Gheyselinck J, Riechmann JL, Meyerowitz EM (2007) Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development 134:1051–1060

    Article  CAS  PubMed  Google Scholar 

  • Singh H (1978) Embryology of gymnosperms. Gebruder Borntraegar, Berlin, 302 pp

  • Tadege M, Kuhlemeier C (1997) Aerobic fermentation during tobacco pollen development. Mol Biol 35:343–354

    Article  CAS  Google Scholar 

  • Unver T, Budak U (2009) Conserved microRNAs and their targets in model grass species Brachypodium distachyon. Planta 230:659–669

    Article  CAS  PubMed  Google Scholar 

  • Wan LC, Zhang H, Lu S, Zhang L, Qiu Z, Zhao Y, Zeng QY, Lin J (2012) Transcriptome-wide identification and characterization of miRNAs from Pinus densata. BMC Genomics 13:132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wear D, Greis J (2002) Southern forest resource assessment: summary of findings. J For 100:6–14

    Google Scholar 

  • Wei LQ, Yan LF, Wang T (2011) Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Genome Biol 12:R53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Williams JH (2008) Novelties of the flowering plant pollen tube underlie diversification of a key life history stage. PNAS 32:11259–11263

    Article  Google Scholar 

  • Williams JH (2012) Pollen tube growth rates and the diversification of flowering plant reproductive cycles. Int J Plant Sci 173:649–661

    Article  Google Scholar 

  • Willmann MR, Poethig RS (2007) Conservation and evolution of miRNA regulatory programs in plant development. Curr Opin Plant Biol 10:503–511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xie ZX, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:642–652

    Article  CAS  Google Scholar 

  • Yakovlev IA, Fossdal CG, Johnsen O (2010) MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce. New Phytol 187:1154–1169

    Article  CAS  PubMed  Google Scholar 

  • Yin ZJ, Li CH, Han ML, Shen FF (2008) Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum). Gene 414:60–66

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Song C, Jia Q, Wang C, Li F, Nicholas KK, Zhang X, Fang J (2011) Computational identification of microRNAs in apple expressed sequence tags and validation of their precise sequences by miR-RACE. Physiol Plant 141:56–70

    Article  CAS  PubMed  Google Scholar 

  • Zhang BH, Pan XP, Wang QL, Cobb GP, Anderson TA (2005) Identification and characterization of new plant microRNAs using EST analysis. Cell Res 15:336–360

    Article  PubMed  Google Scholar 

  • Zhang BH, Pan XP, Cannon CH, Cobb GP, Anderson TA (2006a) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  CAS  PubMed  Google Scholar 

  • Zhang BH, Pan XP, Cobb GP, Anderson TA (2006b) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Pan X, Anderson TA (2006c) Identification of 188 conserved maize microRNAs and their targets. FEBS Lett 580:3753–3762

    Article  CAS  PubMed  Google Scholar 

  • Zhang WW, Luo YP, Gong X, Zeng WH, Li SG (2009) Computational identification of 48 potato microRNAs and their targets. Comput Biol Chem 33:84–93

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Zhou J, Han S, Yang W, Li W, Wei H, Li X, Qi L (2010) Four abiotic stress-induced miRNA families differentially regulated in the embryonic and non-embryonic callus tissues of Larix leptolepis. Biochem Biophys Res Commun 398:355–360

    Article  CAS  PubMed  Google Scholar 

  • Zhou G-K, Kubo M, Zhong R, Demura T, Ye Z-H (2007) Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis. Plant Cell Physiol 48:391–404

    Article  CAS  PubMed  Google Scholar 

Download references

Data archiving statement

The precursor and mature sequences of the miRNAs identified in this study have been submitted to the MiRBase Registry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo D. Fernando.

Additional information

Communicated by J. L. Wegrzyn

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement 1

(DOCX 25 kb)

Supplement 2

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quinn, C.R., Iriyama, R. & Fernando, D.D. Computational predictions and expression patterns of conserved microRNAs in loblolly pine (Pinus taeda). Tree Genetics & Genomes 11, 806 (2015). https://doi.org/10.1007/s11295-014-0806-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-014-0806-1

Keywords

Navigation