Skip to main content
Log in

Identification of differential gene expression profiles between winter dormant and sprouting axillary buds in tea plant (Camellia sinensis) by suppression subtractive hybridization

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Tea plant (Camellia sinensis (L.) O. Kuntze) is an important cash crop. In temperate regions, bud dormancy in winter and budbreak in spring are important biological phenomena for the tea plant life cycle. To understand the molecular mechanism of dormancy maintenance and release in tea plant, the differentially expressed genes in dormant and sprouting axillary buds were investigated in two cultivars (special early-sprouting tea cultivar ‘Camellia sinensis cv. Longjing 43’ (‘LJ’) and late-sprouting tea cultivar ‘C. sinensis cv. Zhenghe Dabaicha’ (‘ZD’)), using suppression subtractive hybridization (SSH) approach. Four high performance complementary DNA (cDNA)-SSH libraries (‘LJ’ sprouting bud library, ‘LJ’ dormant bud library, ‘ZD’ sprouting bud library and ‘ZD’ dormant bud library) were constructed, and 1,736 valid ESTs were obtained, in which 1,242 ESTs were unique to the sprouting bud libraries and 494 ESTs were unique to the dormant bud libraries. Based on sequence matching and gene ontology analysis, 1,287 unigenes consisting of 208 contigs and 1,079 singletons were identified, in which 995 had Blast hits. The putative functions of differentially regulated sequences were involved in most aspects of plant biological processes. The quality and expression patterns of partial ESTs from these four libraries were validated by qRT-PCR. We identified numerous differentially expressed genes mainly involved in stress response, water metabolism, cell division regulation, energy metabolism and hormone regulation from dormant and sprouting bud libraries. This study provides general information on tea plant axillary bud dormancy and release at the transcriptional level and provides some hypotheses for further exploration on the mechanism of bud dormancy and budbreak in tea plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson JV, Gesch RW, Jia Y, Chao WS, Horvath DP (2005) Seasonal shifts in dormancy status, carbohydrate metabolism, and related gene expression in crown buds of leafy spurge. Plant Cell Environ 28(12):1567–1578

    Article  CAS  Google Scholar 

  • Arana MV, Marin-de la Rosa N, Maloof JN, Blazquez MA, Alabadi D (2011) Circadian oscillation of gibberellin signaling in Arabidopsis. Proc Natl Acad Sci U S A 108(22):9292–9297

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Barua DN (1969) Seasonal dormancy in tea (Camellia sinensis L.). Nature 224:514

    Article  CAS  Google Scholar 

  • Bohlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312(5776):1040–1043

    Article  PubMed  Google Scholar 

  • Carr MKV (1972) The climatic requirements of the tea plant: a review. Exp Agric 8(01):1–14

    Article  Google Scholar 

  • Chao WS, Serpe MD (2010) Changes in the expression of carbohydrate metabolism genes during three phases of bud dormancy in leafy spurge. Plant Mol Biol 73(1):227–239

    Article  PubMed  CAS  Google Scholar 

  • Chao WS, Foley ME, Horvath DP, Anderson JV (2007) Signals regulating dormancy in vegetative buds. Int J Plant Dev Biol 1(1):49–56

    Google Scholar 

  • Cooke JEK, Eriksson ME, Junttila O (2012) The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell Environ 35:1707–1728

    Article  PubMed  CAS  Google Scholar 

  • De Costa W, Mohotti AJ, Wijeratne MA (2007) Ecophysiology of tea. Braz J Plant Physiol 19(4):299–332

    Article  Google Scholar 

  • Derory J, Léger P, Garcia V, Schaeffer J, Hauser MT, Salin F, Luschnig C, Plomion C, Glössl J, Kremer A (2006) Transcriptome analysis of bud burst in sessile oak (Quercus petraea). New Phytol 170(4):723–738

    Article  PubMed  CAS  Google Scholar 

  • Erez A, Faust M, Line MJ (1998) Changes in water status in peach buds on induction, development and release from dormancy. Sci Hortic 73(2):111–123

    Article  Google Scholar 

  • Eriksson ME, Webb AAR (2011) Plant cell responses to cold are all about timing. Curr Opin Plant Biol 14(6):731–737

    Article  PubMed  Google Scholar 

  • Eriksson G, Ekberg I, Dormling I, Matérn B, Wettstein DV (1978) Inheritance of bud-set and bud-flushing in Picea abies (L.) Karst. Theor Appl Genet 52(1):3–19

    Article  PubMed  CAS  Google Scholar 

  • Espinosa-Ruiz A, Saxena S, Schmidt J, Mellerowicz E, Miskolczi P, Bako L, Bhalerao RP (2004) Differential stage-specific regulation of cyclin-dependent kinases during cambial dormancy in hybrid aspen. Plant J 38(4):603–615

    Article  PubMed  CAS  Google Scholar 

  • Faust M, Wang SY (1992) Biochemical events associated with resumption of growth in temperate zone fruit trees. In: VII International Symposium on Plant Growth Regulators in Fruit Production 329 pp 257–264

  • Faust M, Liu D, Millard MM, Stutte GW (1991) Bound versus free water in dormant apple buds-a theory for endodormancy. Hortscience 26(7):887–890

    Google Scholar 

  • Gardea AA, Daley LS, Kohnert RL, Soeldner AH, Ning L, Lombard PB, Azarenko AN (1994) Proton NMR signals associated with eco-and endodormancy in winegrape buds. Sci Hortic 56(4):339–358

    Article  CAS  Google Scholar 

  • Gohain B, Bandyopadhyay T, Borchetia S, Bharalee R, Gupta S, Bhorali P, Agarwala N, Das S (2011) Identification and validation of stable reference genes in Camellia Species. J Biotechnol Pharm Res 2(1):9–18

    Google Scholar 

  • Guo J, Ye N, He X (2004) Genetic variation in the leaf-expansion period of the first hybrid generation tea plant. J Tea Sci 24(4):255–259

    Google Scholar 

  • Horvath D (2009) Common mechanisms regulate flowering and dormancy. Plant Sci 177(6):523–531

    Article  CAS  Google Scholar 

  • Horvath DP, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8(11):534–540

    Article  PubMed  CAS  Google Scholar 

  • Horvath DP, Chao WS, Suttle JC, Thimmapuram J, Anderson JV (2008) Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.). BMC Genomics 9(1):536

    Article  PubMed  PubMed Central  Google Scholar 

  • Horvath DP, Sung S, Kim D, Chao W, Anderson J (2010) Characterization, expression and function of dormancy associated MADS-BOX genes from leafy spurge. Plant Mol Biol 73(1–2):169–179

    Article  PubMed  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Biol 47(1):377–403

    Article  CAS  Google Scholar 

  • Jia Y, Anderson JV, Horvath DP, Gu YQ, Lym RG, Chao WS (2006) Subtractive cDNA libraries identify differentially expressed genes in dormant and growing buds of leafy spurge (Euphorbia esula). Plant Mol Biol 61(1):329–344

    Article  PubMed  CAS  Google Scholar 

  • Junttila O, Hanninen H (2012) The minimum temperature for budburst in Betula depends on the state of dormancy. Tree Physiol 32(3):337–345

    Article  PubMed  Google Scholar 

  • Kakkar RK, Nagar PK (1997) Distribution and changes in endogenous polyamines during winter dormancy in tea [Camellia sinensis L. (O) Kuntze]. J Plant Physiol 151(1):63–67

    Article  CAS  Google Scholar 

  • Krishnaraj T, Gajjeraman P, Palanisamy S, Subhas Chandrabose SR, Azad Mandal AK (2011) Identification of differentially expressed genes in dormant (banjhi) bud of tea (Camellia sinensis (L.) O. Kuntze) using subtractive hybridization approach. Plant Physiol Biochem 49(6):565–571

    Article  PubMed  CAS  Google Scholar 

  • Leida C, Terol J, Martí G, Agustí M, Llácer G, Badenes ML, Ríos G (2010) Identification of genes associated with bud dormancy release in Prunus persica by suppression subtractive hybridization. Tree Physiol 30(5):655–666

    Article  PubMed  CAS  Google Scholar 

  • Little C, Bonga J (1974) Rest in the cambium of Abies balsamea. Can J Bot 52(7):1723–1730

    Article  Google Scholar 

  • Liu D, Faust M, Millard MM, Line MJ, Stutte GW (1993) States of water in summer-dormant apple buds determined by proton magnetic resonance imaging. J Am Soc Hortic Sci 118(5):632–637

    Google Scholar 

  • Livaka KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25(4):402–408

    Article  Google Scholar 

  • Maurel C (1997) Aquaporins and water permeability of plant membranes. Annu Rev Plant Biol 48(1):399–429

    Article  CAS  Google Scholar 

  • Mazzitelli L, Hancock RD, Haupt S, Walker PG, Pont SDA, McNicol J, Cardle L, Morris J, Viola R, Brennan R (2007) Co-ordinated gene expression during phases of dormancy release in raspberry (Rubus idaeus L.) buds. J Exp Bot 58(5):1035–1045

    Article  PubMed  CAS  Google Scholar 

  • McWatters HG, Devlin PF (2011) Timing in plants-A rhythmic arrangement. FEBS Lett 585(10):1474–1484

    Article  PubMed  CAS  Google Scholar 

  • Morris CF, Anderberg RJ, Goldmark PJ, Walker-Simmons MK (1991) Molecular cloning and expression of abscisic acid-responsive genes in embryos of dormant wheat seeds. Plant Physiol 95(3):814–821

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nagar PK (1996) Changes in endogenous abscisic acid and phenols during winter dormancy in tea (Camellia sinesis L. (O) Kunze). Acta Physiol Plant 18:33–38

    CAS  Google Scholar 

  • Nagar PK, Kumar A (2000) Changes in endogenous gibberellin activity during winter dormancy in tea (Camellia sinensis (L.) O. Kuntze). Acta Physiol Plant 22(4):439–443

    Article  CAS  Google Scholar 

  • Nagar PK, Sood S (2006) Changes in endogenous auxins during winter dormancy in tea (Camellia sinensis L.) O. Kuntze. Acta Physiol Plant 28(2):165–169

    Article  CAS  Google Scholar 

  • Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20(4):214–220

    Article  PubMed  CAS  Google Scholar 

  • Olsen JE (2010) Light and temperature sensing and signaling in induction of bud dormancy in woody plants. Plant Mol Biol 73(1–2):37–47

    Article  PubMed  CAS  Google Scholar 

  • Or E, Vilozny I, Eyal Y, Ogrodovitch A (2000) The transduction of the signal for grape bud dormancy breaking induced by hydrogen cyanamide may involve the SNF-like protein kinase GDBRPK. Plant Mol Biol 43(4):483–494

    Article  PubMed  CAS  Google Scholar 

  • Oracz K, Bouteau HEM, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J 50(3):452–465

    Article  PubMed  CAS  Google Scholar 

  • Oracz K, El-Maarouf-Bouteau H, Kranner I, Bogatek R, Corbineau F, Bailly C (2009) The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol 150(1):494–505

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pacey-Miller T, Scott K, Ablett E, Tingey S, Ching A, Henry R (2003) Genes associated with the end of dormancy in grapes. Funct Integr Genom 3(4):144–152

    Article  CAS  Google Scholar 

  • Paul A, Kumar S (2011) Responses to winter dormancy, temperature, and plant hormones share gene networks. Funct Integr Genom 11(4):659–664

    Article  CAS  Google Scholar 

  • Paul A, Lal L, Ahuja PS, Kumar S (2012) Alpha-tubulin (CsTUA) up-regulated during winter dormancy is a low temperature inducible gene in tea [Camellia sinensis (L.) O. Kuntze]. Mol Biol Rep 39(4):3485–3490

    Article  PubMed  CAS  Google Scholar 

  • Pin PA, Nilsson O (2012) The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ 35(10):1742–1755

    Article  PubMed  CAS  Google Scholar 

  • Rensing L, Ruoff P (2002) Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiol Int 19(5):807–864

    Article  PubMed  CAS  Google Scholar 

  • Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12(5):217–223

    Article  PubMed  CAS  Google Scholar 

  • Rorat T (2006) Plant dehydrins-tissue location, structure and function. Cell Mol Biol Lett 11(4):536–556

    Article  PubMed  CAS  Google Scholar 

  • Rowland LJ, Liu D, Millard MM, Line MJ (1992) Magnetic resonance imaging of water in flower buds of blueberry. Hortscience 27(4):339–341

    Google Scholar 

  • Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao RP, Boerjan W, Rohde A (2007) A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell 19(8):2370–2390

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Santamaria ME, Rodriguez R, Canal MJ, Toorop PE (2011) Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy. Ann Bot 108(3):485–498

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schneider C, Segre T (2009) Green tea: potential health benefits. Am Fam Physician 79(7):591–594

    PubMed  Google Scholar 

  • Schrader J, Moyle R, Bhalerao R, Hertzberg M, Lundeberg J, Nilsson P, Bhalerao RP (2004) Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome. Plant J Cell Mol Biol 40(2):173–187

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6(5):410–417

    Article  PubMed  CAS  Google Scholar 

  • Singh K, Kumar S, Ahuja PS (2009) Differential expression of Histone H3 gene in tea (Camellia sinensis (L.) O. Kuntze) suggests its role in growing tissue. Mol Biol Rep 36(3):537–542

  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotechnol 9(2):214–219

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Mittler R (2005) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126(1):45–51

    Article  Google Scholar 

  • Tanino KK, Kalcsits L, Silim S, Kendall E, Gray GR (2010) Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. Plant Mol Biol 73(1–2):49–65

    Article  PubMed  CAS  Google Scholar 

  • Tanton TW (1982) Environmental factors affecting the yield of tea (Camellia sinensis). II. Effects of soil temperature, day length, and dry air. Exp Agric 18(01):53–63

    Article  Google Scholar 

  • Thirugnanasambantham K, Prabu G, Palanisamy S, Chandrabose SR, Mandal AK (2013) Analysis of dormant bud (Banjhi) specific transcriptome of tea (Camellia sinensis (L.) O. Kuntze) from cDNA library revealed dormancy-related genes. Appl Biochem Biotechnol 169(4):1405–1417

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118(1):1–8

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Trevisanato SI, Kim YI (2000) Tea and health. Nutr Rev 58(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Vyas D, Kumar S (2005) Tea (Camellia sinensis (L.) O. Kuntze) clone with lower period of winter dormancy exhibits lesser cellular damage in response to low temperature. Plant Physiol Biochem 43(4):383–388

    Article  PubMed  CAS  Google Scholar 

  • Vyas D, Kumar S, Ahuja PS (2007) Tea (Camellia sinensis) clones with shorter periods of winter dormancy exhibit lower accumulation of reactive oxygen species. Tree Physiol 27(9):1253–1259

    Article  PubMed  CAS  Google Scholar 

  • Wang L (1981) Dormancy of tea plant. China Tea 3(1):8–9

    Google Scholar 

  • Wang SY, Faust M (1994) Changes in the antioxidant system associated with budbreak in 'Anna' apple (Malus domestica Borkh.) buds. J Am Soc Hortic Sci 119(4):735–741

    CAS  Google Scholar 

  • Yakovlev IA, Asante DKA, Fossdal CG, Partanen J, Junttila O, Johnsen Ø (2008) Dehydrins expression related to timing of bud burst in Norway spruce. Planta 228(3):459–472

    Article  PubMed  CAS  Google Scholar 

  • Yooyongwech S, Horigane AK, Yoshida M, Yamaguchi M, Sekozawa Y, Sugaya S, Gemma H (2008) Changes in aquaporin gene expression and magnetic resonance imaging of water status in peach tree flower buds during dormancy. Physiol Plant 134(3):522–533

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. David Horvath at USDA-ARS and Dr. Qiongyi Zhao at the University of Queensland for discussions and critical reading of the manuscript. The authors also thank the anonymous reviewers for useful comments. This work was supported by the National Natural Science Foundation of China (31370690 and 30872059) and the Earmarked Fund for China Agriculture Research System (CARS-23).

Data Archiving Statement

All of these ESTs have been deposited in the GenBank under the accession numbers JZ485561–JZ486469 and JZ494771–JZ495458. Additionally, the full accession numbers were listed in the Supplementary files 1~4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yajun Yang.

Additional information

Communicated by J. L. Wegrzyn

Xinchao Wang and Xinyuan Hao contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Additional Fig. 1

Electrophoresis patterns of unsubtracted and subtracted cDNA fragments from second SSH-PCR products. a Electrophoresis patterns of ‘LJ’ second SSH-PCR products. 1, 2 Unsubtracted and subtracted cDNA fragments in dormant buds (reverse library), respectively; 3, 4 unsubtracted and subtracted cDNA fragments in sprouting buds (forward library), respectively. b Electrophoresis patterns of ‘ZD’ second SSH-PCR products. 5, 6 Unsubtracted and subtracted cDNA fragments in dormant buds (reverse library), respectively; 7, 8 unsubtracted and subtracted cDNA fragments in sprouting buds (forward library), respectively (GIF 125 kb)

High resolution image (TIFF 543 kb)

Additional Fig. 2

Subtraction efficiency evaluations of ‘LJ’ and ‘ZD’ SSH libraries using tea plant house-keeping gene β-actin. a, b PCR products of β-actin gene in gel electrophoresis using unsubtracted (14) and subtracted (58) cDNAs from ‘LJ’ forward and reverse SSH library, respectively. c, d PCR products of β-actin gene in gel electrophoresis using unsubtracted (14) and subtracted (58) cDNAs from ‘ZD’ forward and reverse SSH library, respectively. Lanes 1 and 5, 18 cycles; lanes 2 and 6, 23 cycles; lanes 3 and 7, 28 cycles; and lanes 4 and 8, 33 cycles (GIF 37 kb)

High resolution image (TIFF 174 kb)

Supplementary file 1

List of differentially expressed transcripts of ‘Longjing 43’ dormant bud library (XLS 818 kb)

Supplementary file 2

List of differentially expressed transcripts of ‘Longjing 43’ sprouting bud library (XLS 95 kb)

Supplementary file 3

List of differentially expressed transcripts of ‘Zhenghe Dabaicha’ dormant bud library (XLS 655 kb)

Supplementary file 4

List of differentially expressed transcripts of ‘Zhenghe Dabaicha’ sprouting bud library (XLS 109 kb)

Supplementary file 5

Expression statistical analysis of qRT-PCR (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Hao, X., Ma, C. et al. Identification of differential gene expression profiles between winter dormant and sprouting axillary buds in tea plant (Camellia sinensis) by suppression subtractive hybridization. Tree Genetics & Genomes 10, 1149–1159 (2014). https://doi.org/10.1007/s11295-014-0749-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-014-0749-6

Keywords

Navigation