Skip to main content
Log in

Large 13C/12C and small 15N/14N isotope fractionation in an experimental detrital foodweb (litter–fungi–collembolans)

  • Original Article
  • Published:
Ecological Research

Abstract

Correctly estimating the trophic fractionation factors (Δ15N and Δ13C) in controlled laboratory conditions is essential for the application of stable isotope analysis in studies on the trophic structure of soil communities. Laboratory experiments usually suggest large 15N/14N and small 13C/12C trophic fractionation, but in field studies litter-dwelling microarthropods and other invertebrates are consistently enriched in 13C relative to plant litter. In the present study, we report data from two laboratory experiments investigating both fungi–collembolans and litter–fungi–collembolans systems. In the fungi–collembolans system, Δ15N and Δ13C averaged 1.4 ± 0.1 and 1.0 ± 0.2 ‰, respectively. In microcosms with fungi-inoculated litter, the difference in δ15N between collembolans and plant litter averaged 1.5 ± 0.2 ‰, confirming the relatively small 15N/14N trophic fractionation at the basal level of detrital foodwebs reported in numerous field studies. In full agreement with field observations, the difference in δ13C between bulk litter and collembolans in laboratory microcosms averaged 3.6 ± 0.1 ‰ and only little depended on collembolan species identities or the presence of water-soluble compounds in the litter. We conclude that increased δ13C values typical of litter-dwelling decomposers are largely determined by an increased 13C content in saprotrophic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berg PM, Stoffer M, van den Heuvel HH (2004) Feeding guilds in Collembola based on digestive enzymes. Pedobiologia 48:589–601

    Article  Google Scholar 

  • Boström B, Comstedt D, Ekblad A (2007) Isotope fractionation and 13C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia 153:89–98

    Article  PubMed  Google Scholar 

  • Boström B, Compstedt D, Ekblad A (2008) Can isotopic fractionation during respiration explain the 13C-enriched sporocarps of ectomycorrhizal and saprotrophic fungi? New Phytol 177:1012–1019

    Article  PubMed  Google Scholar 

  • Bowling DR, Pataki DE, Randerson JT (2008) Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytol 178:24–40

    Article  PubMed  CAS  Google Scholar 

  • Briones MJI, Ineson P, Sleep D (1999) Use of δ13C to determine food selection in collembolan species. Soil Biol Biochem 31:937–940

    Article  CAS  Google Scholar 

  • Castellini MA, Rea LD (1992) The biochemistry of natural fasting at its limits. Experientia 48:575–581

    Article  PubMed  CAS  Google Scholar 

  • Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (15N and 13C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443–453

    Article  CAS  Google Scholar 

  • Chahartaghi M, Langel R, Scheu S, Ruess L (2005) Feeding guilds in Collembola based on nitrogen stable isotope ratios. Soil Biol Biochem 37:1718–1725

    Article  CAS  Google Scholar 

  • Chamberlain PM, Bull ID, Black HIJ, Ineson P, Evershed RP (2006) The effects of diet on isotopic turnover in Collembola examined using the stable carbon isotopic composition of lipids. Soil Biol Biochem 38:1146–1157

    Article  CAS  Google Scholar 

  • Chernova NM, Bokova AI, Varshav EV, Goloshchapova NP, Savenkova YuYu (2007) Zoophagy in Collembola. Entomol Rev 87:799–811

    Article  Google Scholar 

  • del Rio CM, Wolf N, Carleton SA, Gannes LZ (2009) Isotopic ecology ten years after a call for more laboratory experiments. Biol Rev 84:91–111

    Article  PubMed  Google Scholar 

  • Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi. Academic Press, London

    Google Scholar 

  • Fernandez I, Mahieu N, Cadisch G (2003) Carbon isotopic fractionation during decomposition of plant materials of different quality. Global Biogeochem Cycles 17:1075

    Article  Google Scholar 

  • Fischer BM, Schatz H, Maraun M (2010) Community structure, trophic position and reproductive mode of soil and bark-living oribatid mites in an alpine grassland ecosystem. Exp Appl Acarol 52:221–237

    Article  PubMed  Google Scholar 

  • Halaj J, Peck RW, Niwa CG (2005) Trophic structure of a macroarthropod litter food web in managed coniferous forest stands: a stable isotope analysis with δ15N and δ13C. Pedobiologia 49:109–118

    Article  CAS  Google Scholar 

  • Haubert D, Langel R, Scheu S, Ruess L (2005) Effects of food quality, starvation and life stage on stable isotope fractionation in Collembola. Pedobiologia 49:229–237

    Article  CAS  Google Scholar 

  • Haubert D, Häggblom MM, Langel R, Scheu S, Ruess L (2006) Trophic shift of stable isotopes and fatty acids in Collembola on bacterial diets. Soil Biol Biochem 38:2004–2007

    Article  CAS  Google Scholar 

  • Henn MR, Chapela IH (2001) Ecophysiology of 13C and 15N isotopic fractionation in forest fungi and the roots of the saprotrophic-mycorrhizal divide. Oecologia 128:480–487

    Article  Google Scholar 

  • Hishi T, Hyodo F, Saitoh S, Takeda H (2007) The feeding habits of collembola along decomposition gradients using stable carbon and nitrogen isotope analyses. Soil Biol Biochem 39:1820–1823

    Article  CAS  Google Scholar 

  • Hobbie EA, Werner RA (2004) Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis. New Phytol 161:371–385

    Article  CAS  Google Scholar 

  • Hobbie EA, Macko SA, Shugart HH (1999) Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia 118:353–360

    Article  Google Scholar 

  • Hobbie EA, Sanchez FS, Rygiewicz PT (2012) Controls of isotopic patterns in saprotrophic and ectomycorrhizal fungi. Soil Biol Biochem 48:60–68

    Article  CAS  Google Scholar 

  • Hyodo F, Kohzu A, Tayasu I (2010a) Linking aboveground and belowground food webs through carbon and nitrogen stable isotope analyses. Ecol Res 25:745–756

    Article  CAS  Google Scholar 

  • Hyodo F, Matsumoto T, Takematsu Y, Kamoi T, Fukuda D, Nakagawa M, Itioka T (2010b) The structure of a food web in a tropical rain forest in Malaysia based on carbon and nitrogen stable isotope ratios. J Trop Ecol 26:205–214

    Article  Google Scholar 

  • Kohzu A, Yoshioka T, Ando T, Takahashi M, Koba K, Wada E (1999) Natural 13C and 15N abundance of field-collected fungi and their ecological implications. New Phytol 144:323–330

    Article  Google Scholar 

  • Kohzu A, Miyajima T, Tateishi T, Watanabe T, Takahashi M, Wada E (2005) Dynamics of 13C natural abundance in wood-decomposing fungi and their ecophysiological implications. Soil Biol Biochem 37:1598–1607

    Article  CAS  Google Scholar 

  • Larsen T, Ventura M, Damgaard C, Hobbie EA, Krogh PH (2009) Nutrient allocations and metabolism in two collembolans with contrasting reproduction and growth strategies. Funct Ecol 23:745–755

    Article  Google Scholar 

  • Lee Q, Widden P (1996) Folsomia candida, a ‘fungivorous’ collembolan, feeds preferentially on nematodes rather than soil fungi. Soil Biol Biochem 28:689–690

    Article  CAS  Google Scholar 

  • Maraun M, Erdmann G, Fischer BM, Pollierer MM, Norton RA, Schneider K, Scheu S (2011) Stable isotopes revisited: Their use and limits for oribatid mite trophic ecology. Soil Biol Biochem 43:877–882

    Article  CAS  Google Scholar 

  • Mayor JR, Schuur EAG, Henkel TW (2009) Elucidating the nutritional dynamics of fungi using stable isotopes. Ecol Lett 12:171–183

    Article  PubMed  Google Scholar 

  • McCutchan JH, Lewis WM, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390

    Article  CAS  Google Scholar 

  • Oelbermann K, Scheu S (2002) Stable isotope enrichment (δ15N and δ13C) in a generalist predator (Pardosa lugubris, Araneae: Lycosidae): effects of prey quality. Oecologia 130:337–344

    Article  Google Scholar 

  • Okuzaki Y, Tayasu I, Okuda N, Sota T (2009) Vertical heterogeneity of a forest floor invertebrate food web as indicated by stable-isotope analysis. Ecol Res 24:1351–1359

    Article  Google Scholar 

  • Pollierer MM, Langel R, Scheu S, Maraun M (2009) Compartmentalization of the soil animal food wed as indicated by dual analysis of stable isotope ratios (15N/14N and 13C/12C). Soil Biol Biochem 41:1221–1226

    Article  CAS  Google Scholar 

  • Pollierer MM, Dyckmans J, Scheu S, Haubert D (2012) Carbon flux through fungi and bacteria into the forest soil animal food web as indicated by compound-specific 13C fatty acid analysis. Funct Ecol 26:978–990

    Article  Google Scholar 

  • Ponsard S, Arditi R (2000) What can stable isotopes (δ15N and δ13C) tell about the food web of soil macro-invertebrates? Ecology 81:852–864

    Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montana CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189

    Article  PubMed  Google Scholar 

  • Robbins CT, Felicetti LA, Florin ST (2010) The impact of protein quality on stable nitrogen isotope ratio discrimination and assimilated diet estimation. Oecologia 162:571–579

    Article  PubMed  Google Scholar 

  • Ruess L, Tiunov AV, Haubert D, Richnow HH, Häggblom MM, Scheu S (2005) Carbon stable isotope fractionation and trophic transfer of fatty acids in fungal based soil food chains. Soil Biol Biochem 37:945–953

    Article  CAS  Google Scholar 

  • Scheu S, Falca M (2000) The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community. Oecologia 123:285–286

    Article  Google Scholar 

  • Scheu S, Folger M (2004) Single and mixed diets in Collembola: effects on reproduction and stable isotope fractionation. Funct Ecol 18:94–102

    Article  Google Scholar 

  • Scheu S, Setälä H (2002) Multitrophic interactions in decomposer food webs. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge University Press, Cambridge, pp 223–264

    Chapter  Google Scholar 

  • Schmidt O, Curry JP, Dyckmans J, Rota E, Scrimgeour CM (2004) Dual stable isotope analysis (δ13C and δ15N) of soil invertebrates and their food sources. Pedobiologia 48:171–180

    Article  Google Scholar 

  • Schneider K, Migge S, Norton RA, Scheu S, Langel R, Reineking A, Maraun M (2004) Trophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios (15N/14N). Soil Biol Biochem 36:1769–1774

    Article  CAS  Google Scholar 

  • Semenina EE, Tiunov AV (2010) Isotopic fractionation by saprotrophic microfungi: effects of species, temperature and the age of colonies. Pedobiologia 53:213–217

    Article  CAS  Google Scholar 

  • Semenina EE, Tiunov AV (2011) Trophic fractionation (Δ15N) in Collembola depends on nutritional status: a laboratory experiment and mini-review. Pedobiologia 54:101–109

    Article  CAS  Google Scholar 

  • Semenyuk II, Tiunov AV (2011) Isotopic signature (15N/14N and 13C/12C) confirms similarity of trophic niches of millipedes (Myriapoda, Diplopoda) in a temperate deciduous forest. Biology Bulletin 38:283–291

    Article  CAS  Google Scholar 

  • Setälä H, McLean MA (2004) Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia 139:98–107

    Article  PubMed  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Taylor AFS (2008) Missing links—δ13C anomalies between substrates and consumers. New Phytol 177:845–847

    Article  PubMed  CAS  Google Scholar 

  • Tiunov AV (2007) Stable isotopes of carbon and nitrogen in soil ecological studies. Biol Bull 34(4):395–407

    Article  CAS  Google Scholar 

  • Tiunov AV, Scheu S (2005) Facilitative interactions rather than resource partitioning drive diversity-functioning relationships in laboratory fungal communities. Ecol Lett 8:618–625

    Article  Google Scholar 

  • Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–182

    Article  PubMed  Google Scholar 

  • Wallander H, Goransson H, Rosengren U (2004) Production, standing biomass and natural abundance of 15N and 13C in ectomycorrhizal mycelia collected at different soil depths in two forest types. Oecologia 139:89–97

    Article  PubMed  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press

Download references

Acknowledgments

This study was supported by the Russian Foundation for Basic Research (Project 11-04-00948) and the “Wildlife” Program of the Russian Academy of Sciences. We thank S.I. Golovatch for improving the English of an advanced draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton M. Potapov.

About this article

Cite this article

Potapov, A.M., Semenina, E.E., Kurakov, A.V. et al. Large 13C/12C and small 15N/14N isotope fractionation in an experimental detrital foodweb (litter–fungi–collembolans). Ecol Res 28, 1069–1079 (2013). https://doi.org/10.1007/s11284-013-1088-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-013-1088-z

Keywords

Navigation