Skip to main content

Advertisement

Log in

Magnetic resonance imaging texture analysis for quantitative evaluation of the mandibular condyle in juvenile idiopathic arthritis

  • Original Article
  • Published:
Oral Radiology Aims and scope Submit manuscript

Abstract

Objectives

Juvenile idiopathic arthritis (JIA) is a chronic inflammatory disease that affects the joints and other organs, including the development of the former in a growing child. This study aimed to evaluate the feasibility of texture analysis (TA) based on magnetic resonance imaging (MRI) to provide biomarkers that serve to identify patients likely to progress to temporomandibular joint damage by associating JIA with age, gender and disease onset age.

Methods

The radiological database was retrospectively reviewed. A total of 45 patients were first divided into control group (23) and JIA group (22). TA was performed using grey-level co-occurrence matrix (GLCM) parameters, in which 11 textural parameters were calculated using MaZda software. These 11 parameters were ranked based on the p value obtained with ANOVA and then correlated with age, gender and disease onset age.

Results

Significant differences in texture parameters of condyle were demonstrated between JIA group and control group (p < 0.05). There was a progressive loss of uniformity in the grayscale pixels of MRI with an increasing age in JIA group.

Conclusions

MRI TA of the condyle can make it possible to detect the alterations in bone marrow of patients with JIA and promising tool which may help the image analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

JIA:

Juvenile idiopathic arthritis

MRI:

Magnetic resonance imaging

TA:

Texture analysis

TMJ:

Temporomandibular joint

ILAR:

International League of Associations for Rheumatology

DICOM:

Digital Imaging and Communications in Medicine

FOV:

Field of view

References

  1. Ravelli A, Martini A. Juvenile idiopathic arthritis. Lancet. 2007;369(9563):767–78. https://doi.org/10.1016/S0140-6736(07)60363-8.

    Article  PubMed  Google Scholar 

  2. Navallas M, Inarejos EJ, Iglesias E, et al. MR imaging of the temporomandibular joint in juvenile idiopathic arthritis: technique and findings. Radiographics. 2017;37(2):595–612. https://doi.org/10.1148/rg.2017160078.

    Article  PubMed  Google Scholar 

  3. Tolend MA, Twilt M, Cron RQ, et al. Toward establishing a standardized magnetic resonance imaging scoring system for temporomandibular joints in juvenile idiopathic arthritis. Arthritis Care Res. 2018;70(5):758–67. https://doi.org/10.1002/acr.23340.

    Article  Google Scholar 

  4. Hechler BL, Phero JA, Van Mater H, et al. Ultrasound versus magnetic resonance imaging of the temporomandibular joint in juvenile idiopathic arthritis: a systematic review. Int J Oral Maxillofac Surg. 2018;47(1):83–9. https://doi.org/10.1016/j.ijom.2017.07.014.

    Article  PubMed  Google Scholar 

  5. Stoll ML, Morlandt AB, Teerawattanapong S, et al. Safety and efficacy of intra-articular infliximab therapy for treatment-resistant temporomandibular joint arthritis in children: a retrospective study. Rheumatology. 2013;52(3):554–9. https://doi.org/10.1093/rheumatology/kes318.

    Article  PubMed  Google Scholar 

  6. Rongo R, Alstergren P, Ammendola L, et al. Temporomandibular joint damage in juvenile idiopathic arthritis: diagnostic validity of diagnostic criteria for temporomandibular disorders. J Oral Rehabil. 2019;46(5):450–9. https://doi.org/10.1111/joor.12769.

    Article  PubMed  Google Scholar 

  7. Stoustrup P, Lerman MA, Twilt M. The temporomandibular joint in juvenile idiopathic arthritis. Rheum Dis Clin North Am. 2021;47(4):607–17. https://doi.org/10.1016/j.rdc.2021.06.004.

    Article  PubMed  Google Scholar 

  8. Wang XD, Zhang JN, Gan YH, et al. Current understanding of pathogenesis and treatment of TMJ osteoarthritis. J Dent Res. 2015;94(5):666–73. https://doi.org/10.1177/0022034515574770.

    Article  PubMed  Google Scholar 

  9. Li G, Yin J, Gao J, et al. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther. 2013;15(6):223. https://doi.org/10.1186/ar4405.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tomas X, Pomes J, Berenguer J, et al. MR imaging of temporomandibular joint dysfunction: a pictorial review. Radiographics. 2006;26(3):765–81. https://doi.org/10.1148/rg.263055091.

    Article  PubMed  Google Scholar 

  11. de Albuquerque M, Anjos LG, de Andrade HMT, et al. MRI texture analysis reveals deep gray nuclei damage in amyotrophic lateral sclerosis. J Neuroimaging. 2016;26(2):201–6. https://doi.org/10.1111/jon.12262.

    Article  PubMed  Google Scholar 

  12. de Oliveira MS, Balthazar ML, D’Abreu A, et al. MR imaging texture analysis of the corpus callosum and thalamus in amnestic mild cognitive impairment and mild Alzheimer disease. AJNR Am J Neuroradiol. 2011;32(1):60–6. https://doi.org/10.3174/ajnr.A2232.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Goncalves BC, de Araujo EC, Nussi AD, et al. Texture analysis of cone-beam computed tomography images assists the detection of furcal lesion. J Periodontol. 2020. https://doi.org/10.1002/JPER.19-0477.

    Article  PubMed  Google Scholar 

  14. De Rosa CS, Bergamini ML, Palmieri M, et al. Differentiation of periapical granuloma from radicular cyst using cone beam computed tomography images texture analysis. Heliyon. 2020;6(10): e05194. https://doi.org/10.1016/j.heliyon.2020.e05194.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hirvasniemi J, Gielis WP, Arbabi S, et al. Bone texture analysis for prediction of incident radiographic hip osteoarthritis using machine learning: data from the Cohort Hip and Cohort Knee (CHECK) study. Osteoarthritis Cartilage. 2019;27(6):906–14. https://doi.org/10.1016/j.joca.2019.02.796.

    Article  PubMed  Google Scholar 

  16. Mungai F, Verrone GB, Pietragalla M, et al. CT assessment of tumor heterogeneity and the potential for the prediction of human papillomavirus status in oropharyngeal squamous cell carcinoma. Radiol Med. 2019. https://doi.org/10.1007/s11547-019-01028-6.

    Article  PubMed  Google Scholar 

  17. Goh V, Ganeshan B, Nathan P, et al. Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology. 2011;261(1):165–71. https://doi.org/10.1148/radiol.11110264.

    Article  PubMed  Google Scholar 

  18. Doshi AM, Ream JM, Kierans AS, et al. Use of MRI in differentiation of papillary renal cell carcinoma subtypes: qualitative and quantitative analysis. AJR Am J Roentgenol. 2016;206(3):566–72. https://doi.org/10.2214/AJR.15.15004.

    Article  PubMed  Google Scholar 

  19. Ganeshan B, Miles KA. Quantifying tumour heterogeneity with CT. Cancer Imaging. 2013;26(13):140–9. https://doi.org/10.1102/1470-7330.2013.0015.

    Article  Google Scholar 

  20. Calle AJM, Ogawa CM, Martins JS, et al. Temporomandibular joint in juvenile idiopathic arthritis: magnetic resonance imaging measurements and their correlation with imaging findings. Oral Radiol. 2021. https://doi.org/10.1007/s11282-021-00576-w.

    Article  PubMed  Google Scholar 

  21. Petty RE, Southwood TR, Baum J, et al. Revision of the proposed classification criteria for juvenile idiopathic arthritis: Durban, 1997. J Rheumatol. 1998;25(10):1991–4.

    PubMed  Google Scholar 

  22. Costa ALF, de Souza CB, Fardim KAC, et al. Texture analysis of cone beam computed tomography images reveals dental implant stability. Int J Oral Maxillofac Surg. 2021;50(12):1609–16. https://doi.org/10.1016/j.ijom.2021.04.009.

    Article  PubMed  Google Scholar 

  23. Haralick RS, ShanmugamDinstein KIH. Textural Features for Image Classification. IEEE Trans Syst Man Cybern. 1973;3:610–21.

    Article  Google Scholar 

  24. Collin M, Hagelberg S, Ernberg M, et al. Temporomandibular joint involvement in children with juvenile idiopathic arthritis-symptoms, clinical signs and radiographic findings. J Oral Rehabil. 2022;49(1):37–46. https://doi.org/10.1111/joor.13269.

    Article  PubMed  Google Scholar 

  25. Thierry S, Fautrel B, Lemelle I, et al. Prevalence and incidence of juvenile idiopathic arthritis: a systematic review. Joint Bone Spine. 2014;81(2):112–7. https://doi.org/10.1016/j.jbspin.2013.09.003.

    Article  PubMed  Google Scholar 

  26. Hemke R, Herregods N, Jaremko JL, et al. Imaging assessment of children presenting with suspected or known juvenile idiopathic arthritis: ESSR-ESPR points to consider. Eur Radiol. 2020;30(10):5237–49. https://doi.org/10.1007/s00330-020-06807-8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Paniagua B, Ruellas AC, Benavides E, et al. Validation of CBCT for the computation of textural biomarkers. Proc SPIE Int Soc Opt Eng. 2015;17:9417. https://doi.org/10.1117/12.2081859.

    Article  Google Scholar 

  28. Prothero J, Vimort JB, Ruellas A, et al. Advanced statistical analysis to classify high dimensionality textural probability-distribution matrices. Proc SPIE Int Soc Opt Eng. 2019. https://doi.org/10.1117/12.2507978.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bianchi J, Goncalves JR, de Oliveira Ruellas AC, et al. Quantitative bone imaging biomarkers to diagnose temporomandibular joint osteoarthritis. Int J Oral Maxillofac Surg. 2021;50(2):227–35. https://doi.org/10.1016/j.ijom.2020.04.018.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by FAPESP (São Paulo Research Foundation) Grants: 2017/09550-4, 2019/00495-6 and 20/08883-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Luiz Ferreira Costa.

Ethics declarations

Conflict of interests

All authors of this work declare no conflict of interest.

Ethics approval

The study was approved by the Institutional Review Board of UNICAMP, according to Protocol Number 54900216.9.0000.5404. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008. Informed consent was obtained from all patients for being included in the study.

Informed consent

Written informed consent was obtained from the guardian of each participant, after informed about the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ricardo, A.L.F., da Silva, G.A., Ogawa, C.M. et al. Magnetic resonance imaging texture analysis for quantitative evaluation of the mandibular condyle in juvenile idiopathic arthritis. Oral Radiol 39, 329–340 (2023). https://doi.org/10.1007/s11282-022-00641-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11282-022-00641-y

Keywords

Navigation