Skip to main content
Log in

Metabolic engineering of Lactococcus lactis for high level accumulation of glutathione and S-adenosyl-l-methionine

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Glutathione (GSH) and S-adenosyl methionine (SAM) have been applied as liver-protective factors to prevent and treat many different liver damages and diseases. Due to their low stability and short half-life, oral administration of GSH or SAM might be replaced by continuous supplying through living lactic bacteria in yogurt. In this study, Lactococcus lactis was engineered via synthetic biology strategies to produce these two important molecules. The bi-functional GSH synthase gene (gshF) and SAM synthase gene (metK) were transformed into food-grade L. lactis together with an adhesion factor gene (cwaA). The highest accumulation of SAM (9.0 mg/L) and GSH (17.3 mg/L) was achieved after 17 h cultivation of the recombinant L. lactis. Meanwhile, the autoaggregation and hydrophobicity were also improved significantly, which suggested that this engineered L. lactis might have an increased colonization-prone ability in human GI. Our studies demonstrated one potential route to self-produce and deliver the liver-healthy factors within living probiotic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Attal J, Theron MC, Puissant C, Houdebine LM (1999) Effect of intercistronic length on internal ribosome entry site (IRES) efficiency in bicistronic mRNA. Gene Expr 8(5–6):299–309

    CAS  PubMed  Google Scholar 

  • Balcázar JL, De BI, Ruiz-Zarzuela I, Vendrell D, Calvo AC, Márquez I, Gironés O, Muzquiz JL (2007) Changes in intestinal microbiota and humoral immune response following probiotic administration in brown trout (Salmo trutta). Br J Nutr 97(3):522–527

    Article  PubMed  CAS  Google Scholar 

  • Barony GM, Tavares GC, Pereira FL, Carvalho AF, Dorella FA, Leal CAG, Figueiredo HCP (2017) Large-scale genomic analyses reveal the population structure and evolutionary trends of Streptococcus agalactiae strains in Brazilian fish farms. Sci Rep 7(1):13538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collado MC, Meriluoto J, Salminen S (2008) Adhesion and aggregation properties of probiotic and pathogen strains. Eur Food Res Technol 226(5):1065–1073

    Article  CAS  Google Scholar 

  • Ge S, Zhu T, Li Y (2012) Expression of Bacterial gshf in Pichia pastoris for glutathione production. Appl Environ Microbiol 78(15):5435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han G, Hu X, Wang X (2016) Overexpression of methionine adenosyltransferase in Corynebacterium glutamicum for production of S-adenosyl-l-methionine. Biotechnol Appl Biochem 63(5):679–689

    Article  CAS  PubMed  Google Scholar 

  • Jang SH, Cha JW, Han NS, Jeong KJ (2018) Development of bicistronic expression system for the enhanced and reliable production of recombinant proteins in Leuconostoc citreum. Sci Rep 8(1):8852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamarthapu V (2013) Engineered Pichia pastoris for enhanced production of S-adenosylmethionine. AMB Express 3(1):1–9

    Article  CAS  Google Scholar 

  • Kim JY, Seo HS, Seo MJ, Suh JW, Hwang I, Ji GE (2008a) Development of S-Adenosyl-l-methionine (SAM)-reinforced probiotic yogurt using Bifidobacterium bifidum BGN4. Food Sci Biotechnol 17(5):1025–1031

    CAS  Google Scholar 

  • Kim XY, Suh JW, Ji GE (2008b) Evaluation of S-Adenosyl-l-methionine production by Bifidobacterium bifidum BGN4. Food Sci Biotechnol 17(1):184–187

    CAS  Google Scholar 

  • Klijn N, Weerkamp AH, De Vos WM (1995) Genetic marking of Lactococcus lactis shows its survival in the human gastrointestinal tract. Appl Environ Microbiol 61(7):2771–2774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuipers OP, de Ruyter PGGA, Kleerebezem M, de Vos WM (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64(1):15–21

    Article  CAS  Google Scholar 

  • Lan CQ, Oddone G, Mills DA, Block DE (2010) Kinetics of lactococcus lactis growth and metabolite formation under aerobic and anaerobic conditions in the presence or absence of hemin. Biotechnol Bioeng 95(6):1070–1080

    Article  CAS  Google Scholar 

  • Le DT, Tran TL, Duviau MP, Meyrand M, Guérardel Y, Castelain M, Loubiere P, Chapot-Chartier MP, Dague E, Mercier-Bonin M (2013) Unraveling the role of surface mucus-binding protein and pili in muco-adhesion of Lactococcus lactis. PLoS ONE 8(11):e79850

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lieber CS (1183S) S-adenosyl-l-methionine: its role in the treatment of liver disorders. Am J Clin Nutr 76(5):1183S–S1187

    Article  CAS  PubMed  Google Scholar 

  • Lin JP, Tian J, You JF, Jin ZH, Xu ZN, Cen PL (2004) An effective strategy for the co-production of S-adenosyl-l-methionine and glutathione by fed-batch fermentation. Biochem Eng J 21(1):19–25

    Article  CAS  Google Scholar 

  • Liu F, Merchant HA, Kulkarni RP, Alkademi M, Basit AW (2011) Evolution of a physiological pH6.8 bicarbonate buffer system: application to the dissolution testing of enteric coated products. Eur J Pharm Biopharm 78(1):151–157

    Article  CAS  PubMed  Google Scholar 

  • Pophaly SD, Singh R, Pophaly SD, Kaushik JK, Tomar SK (2012) Current status and emerging role of glutathione in food grade lactic acid bacteria. Microb Cell Fact 11(1):114–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren W, Cai D, Hu S, Xia S, Wang Z, Tan T, Zhang Q (2017) S -Adenosyl-l-methionine production by Saccharomyces cerevisiae SAM 0801 using dl -methionine mixture: from laboratory to pilot scale. Process Biochem 62:48–52

    Article  CAS  Google Scholar 

  • Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharmacother 57(3):145–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vergauwen B, Vos DD, Beeumen JJV (2006) Characterization of the bifunctional γ-glutamate-cysteine ligase/glutathione synthetase (GshF) of Pasteurella multocida. J Biol Chem 281(7):4380

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Zhang J, Wu H, Li Z, Ye Q (2015) Heterologous gshF gene expression in various vector systems in Escherichia coli for enhanced glutathione production. J Biotechnol 214:63–68

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Li D, Zhang G, Wang C, Wei G (2019) Disruption of por1 gene in Candida utilis improves co-production of S-adenosylmethionine and glutathione. J Biotechnol 290:16–23

    Article  CAS  PubMed  Google Scholar 

  • Wu GY, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134(3):489

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Li W, Wang D, Wu H, Li Z, Ye Q (2016) Characterization of bifunctional l-glutathione synthetases from Actinobacillus pleuropneumoniae and Actinobacillus succinogenes for efficient glutathione biosynthesis. Appl Microbiol Biotechnol 100(14):6279–6289

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Gongyuan W, Jian C (2004) Glutathione: a review on biotechnological production. Appl Microbiol Biotechnol 66(3):233

    Article  CAS  Google Scholar 

  • Yu P, Zhu P (2017) Improving the production of S-adenosyl-L-methionine in Escherichia coli by overexpressing metk. Prep Biochem Biotechnol 47(9):867–873

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Zuo F, Yu R, Zeng Z, Ma H, Chen S (2015) Comparative genome-based identification of a cell wall-anchored protein from Lactobacillus plantarum increases adhesion of Lactococcus lactis to human epithelial cells. Sci Rep 5(1):14109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Quan C, Wang C, Wu H, Li Z, Ye Q (2016) Systematic manipulation of glutathione metabolism in Escherichia coli for improved glutathione production. Microb Cell Fact 15(1):38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao W, Hang B, Zhu X, Wang R, Shen M, Huang L, Xu Z (2016a) Improving the productivity of S-adenosyl-l-methionine by metabolic engineering in an industrial Saccharomyces cerevisiae strain. J Biotechnol 236:64–70

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Shi F, Hang B, Huang L, Cai J, Xu Z (2016b) The Improvement of sam accumulation by integrating the endogenous methionine adenosyltransferase gene SAM2 in genome of the industrial Saccharomyces cerevisiae strain. Appl Biochem Biotechnol 178(6):1263–1272

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Ji X, Wu Z, Zhang J, Du G (2018) Improved acid-stress tolerance of Lactococcus lactis NZ9000 and Escherichia coli BL21 by overexpression of the anti-acid component recT. J Ind Microbiol Biotechnol 45(12):1091–1101

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank much Prof. Haiqin Chen (College of Food Science and Technology, Jiangnan University, Wuxi, China) and Prof. Fei Liu (College of Medicine, Shandong University, Jinan, China) for the donation of the plasmid (pNZ8148), host strain (L. lactis NZ9000) and nisin product. We also thank much for the contribution by other H14Z1-Hangzhou iGEM members (JY Zhu, NT Qiu, K Zhou, JT Zhang, QY Shen, LX Li, JJ Wu, ML Kang) in our AP center, Mr. WZ Chen (College of Life and Marine Sciences, Shenzhen University, Shenzhen, China) as the group advisor and Ms. XM Tang (Chemistry teacher in AP center) as the group co-PI. Finally, we appreciate Zhejiang Vnor Environment Protection Corp. Ltd (Hangzhou, China) very much for financial supporting of our iGEM competition program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhinan Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

Ethics approval and consent to participate.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Shi, Z., Shao, J. et al. Metabolic engineering of Lactococcus lactis for high level accumulation of glutathione and S-adenosyl-l-methionine. World J Microbiol Biotechnol 35, 185 (2019). https://doi.org/10.1007/s11274-019-2759-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-019-2759-x

Keywords

Navigation