Skip to main content

Advertisement

Log in

Genome analysis reveals insights of the endophytic Bacillus toyonensis BAC3151 as a potentially novel agent for biocontrol of plant pathogens

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Diseases caused by phytopathogenic microorganisms account for enormous losses for agribusiness. Although Bacillus species are recognized as being antimicrobial producers and some may provide benefits to plants, the association between Bacillus toyonensis and plants has not been studied. In this study, the whole-genome sequenced endophytic B. toyonensis BAC3151, which has demonstrated antimicrobial activity and quorum sensing inhibition of phytopathogenic bacteria, was investigated for its potential for the production of compounds for biocontrol of plant pathogens. Four whole-genome sequenced B. toyonensis strains shared 3811 protein-coding DNA sequences (CDSs), while strain-specific CDSs, such as biosynthetic gene clusters of antimicrobials, were associated with specific chromosomal regions and mobile genetic elements of the strains. B. toyonensis strains had a higher frequency of putative bacteriocins gene clusters than that of Bacillus species traditionally used for the production of antimicrobials. In addition, gene clusters potentially involved in the production of novel bacteriocins were found in BAC3151, as well as biosynthetic genes of several other compounds, including non-ribosomal peptides, N-acyl homoserine lactonase and chitinases, revealing a genetic repertoire for antimicrobial synthesis greater than that of other Bacillus strains that have demonstrated effective activity against phytopathogens. This study showed for the first time that B. toyonensis has potential to produce various antimicrobials, and the analyses performed indicated that the endophytic strain BAC3151 can be useful for the development of new strategies to control microbial diseases in plants that are responsible for large damages in agricultural crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abriouel H, Franz CM, Ben Omar N, Galvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35:201–232

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Andreolli M, Lampis S, Poli M, Gullner G, Biro B, Vallini G (2013) Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons. Chemosphere 92:688–694

    Article  CAS  Google Scholar 

  • Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D, Garrity G et al (2008) Toward an online repository of standard operating procedures (sops) for (meta)genomic annotation. OMICS 12:137–141

    Article  CAS  Google Scholar 

  • Anthony T, Chellappa GS, Rajesh T, Gunasekaran P (2010) Functional analysis of a putative holin-like peptide-coding gene in the genome of Bacillus licheniformis AnBa9. Arch Microbiol 192:51–56

    Article  CAS  Google Scholar 

  • Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G et al (2013) Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 30:108–160

    Article  CAS  Google Scholar 

  • Aunpad R, Panbangred W (2012) Evidence for two putative holin-like peptides encoding genes of Bacillus pumilus strain WAPB4. Curr Microbiol 64:343–348

    Article  CAS  Google Scholar 

  • Bakker PA, Pieterse CM, van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–343

    Article  Google Scholar 

  • Banala S, Ensle P, Sussmuth RD (2013) Total synthesis of the ribosomally synthesized linear azole-containing peptide plantazolicin A from Bacillus amyloliquefaciens. Angew Chem Int Ed Engl 52:9518–9523

    Article  CAS  Google Scholar 

  • Barka EA, Gognies S, Nowak J, Audran JC, Belarbi A (2002) Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24:135–142

    Article  Google Scholar 

  • Bavykin SG, Lysov YP, Zakhariev V, Kelly JJ, Jackman J, Stahl DA et al (2004) Use of 16S rRNA, 23S rRNA, and gyrB gene sequence analysis to determine phylogenetic relationships of Bacillus cereus group microorganisms. J Clin Microbiol 42:3711–3730

    Article  CAS  Google Scholar 

  • Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ, Kautsar SA et al (2017) Antismash 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. doi:10.1093/nar/gkx319

    Google Scholar 

  • Blom J, Albaum SP, Doppmeier D, Puhler A, Vorholter FJ, Zakrzewski M et al (2009) EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinform 10:154

    Article  CAS  Google Scholar 

  • Böhm ME, Huptas C, Krey VM, Scherer S (2015) Massive horizontal gene transfer, strictly vertical inheritance and ancient duplications differentially shape the evolution of Bacillus cereus enterotoxin operons hbl, cytk and nhe. BMC Evol Biol 15:246

    Article  Google Scholar 

  • Carlson CR, Caugant DA, Kolsto AB (1994) Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl Environ Microbiol 60:1719–1725

    CAS  Google Scholar 

  • Carlson CR, Johansen T, Kolsto AB (1996) The chromosome map of Bacillus thuringiensis subsp. canadensis HD224 is highly similar to that of the Bacillus cereus type strain ATCC 14579. FEMS Microbiol Lett 141:163–167

    Article  CAS  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I et al (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014

    Article  CAS  Google Scholar 

  • Chen F, Gao Y, Chen X, Yu Z, Li X (2013) Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. Int J Mol Sci 14:17477–17500

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  Google Scholar 

  • Coombs JT, Michelsen PP, Franco CMM (2004) Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol Control 29:359–366

    Article  Google Scholar 

  • Costa LEO, Queiroz MV, Borges AC, Moraes CA, Araújo EF (2012) Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Braz J Microbiol 43:1562–1575

    Article  Google Scholar 

  • Cox CL, Doroghazi JR, Mitchell DA (2015) The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles. BMC Genom 16:778

    Article  CAS  Google Scholar 

  • D’Alessandro M, Erb M, Ton J, Brandenburg A, Karlen D, Zopfi J et al (2014) Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ 37:813–826

    Article  CAS  Google Scholar 

  • Darling AE, Mau B, Perna NT (2010) ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5:e11147

    Article  CAS  Google Scholar 

  • Delgado MA, Rintoul MR, Farias RN, Salomon RA (2001) Escherichia coli RNA polymerase is the target of the cyclopeptide antibiotic microcin J25. J Bacteriol 183:4543–4550

    Article  CAS  Google Scholar 

  • Dischinger J, Basi Chipalu S, Bierbaum G (2014) Lantibiotics: promising candidates for future applications in health care. Int J Med Microbiol 304:51–62

    Article  CAS  Google Scholar 

  • Dong YH, Xu JL, Li XZ, Zhang LH (2000) Aiia, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci USA 97:3526–3531

    Article  CAS  Google Scholar 

  • Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817

    Article  CAS  Google Scholar 

  • Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759

    Article  CAS  Google Scholar 

  • Dong YH, Zhang XF, Xu JL, Zhang LH (2004) Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl Environ Microbiol 70:954–960

    Article  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  Google Scholar 

  • Fang Y, Li Z, Liu J, Shu C, Wang X, Zhang X et al (2011) A pangenomic study of Bacillus thuringiensis. J Genet Genom 38:567–576

    Article  CAS  Google Scholar 

  • Favret ME, Yousten AA (1989) Thuricin: the bacteriocin produced by Bacillus thuringiensis. J Invertebr Pathol 53:206–216

    Article  CAS  Google Scholar 

  • Federhen S, Rossello-Mora R, Klenk H-P, Tindall BJ, Konstantinidis KT, Whitman WB et al (2016) Meeting report: Genbank microbial genomic taxonomy workshop (12–13 may, 2015). Stand Genom Sci 11:15

    Article  Google Scholar 

  • Felsenstein J (1989) PHYLIP: phylogeny inference package (version3.2). Cladistics 5:164–166

    Google Scholar 

  • Fickers P (2012) Antibiotic compounds from Bacillus: why are they so amazing? Am J Biochem Biotechnol 8:38–43

    Article  Google Scholar 

  • Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732

    Article  CAS  Google Scholar 

  • Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468

    Article  CAS  Google Scholar 

  • Gonzalez JM Jr, Brown BJ, Carlton BC (1982) Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proc Natl Acad Sci USA 79:6951–6955

    Article  CAS  Google Scholar 

  • Guinebretière MH, Auger S, Galleron N, Contzen M, De Sarrau B, De Buyser ML et al (2013) Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus group occasionally associated with food poisoning. Int J Syst Evol Microbiol 63:31–40

    Article  Google Scholar 

  • Haack BJ, Andrews RE, Loynachan TE (1996) Tn916-mediated genetic exchange in soil. Soil Biol Biochem 28:765–771

    Article  CAS  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahafee WF, Kloepper J (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Heddle JG, Blance SJ, Zamble DB, Hollfelder F, Miller DA, Wentzell LM et al (2001) The antibiotic microcin B17 is a DNA gyrase poison: characterisation of the mode of inhibition. J Mol Biol 307:1223–1234

    Article  CAS  Google Scholar 

  • Hegemann JD, Zimmermann M, Xie X, Marahiel MA (2015) Lasso peptides: an intriguing class of bacterial natural products. Acc Chem Res 48:1909–1919

    Article  CAS  Google Scholar 

  • Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M et al (2000) Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: one species on the basis of genetic evidence. Appl Environ Microbiol 66:2627–2630

    Article  CAS  Google Scholar 

  • Hong CE, Jo SH, Moon JY, Lee JS, Kown SY, Partk JM (2015) Isolation of novel leaf-inhabiting endophytic bacteria in Arabidopsis thaliana and their antagonistic effects on phytophathogens. Plant Biotechnol Rep 9:451–458

    Article  Google Scholar 

  • Hong CE, Kwon SY, Park JM (2016) Biocontrol activity of Paenibacillus polymyxa AC-1 against Pseudomonas syringae and its interaction with Arabidopsis thaliana. Microbiol Res 185:13–21

    Article  CAS  Google Scholar 

  • Jayaswal RK, Fernandez MA, Schroeder RG (1990) Isolation and characterization of a Pseudomonas strain that restricts growth of various phytopathogenic fungi. Appl Environ Microbiol 56:1053–1058

    CAS  Google Scholar 

  • Jeong H, Jo SH, Hong CE, Park JM (2016) Genome sequence of the endophytic bacterium Bacillus thuringiensis strain KB1, a potential biocontrol agent against phytopathogens. Genome Announc 4:e00279–e00316

    Google Scholar 

  • Jha PN, Kumar A (2007) Endophytic colonization of Typha australis by a plant growth-promoting bacterium Klebsiella oxytoca strain GR-3. J Appl Microbiol 103:1311–1320

    Article  CAS  Google Scholar 

  • Jiménez G, Urdiain M, Cifuentes A, Lopez-Lopez A, Blanch AR, Tamames J et al (2013) Description of Bacillus toyonensis sp. nov., a novel species of the Bacillus cereus group, and pairwise genome comparisons of the species of the group by means of ANI calculations. Syst Appl Microbiol 36:383–391

    Article  Google Scholar 

  • Jin CW, Ye YQ, Zheng SJ (2014) An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes. Ann Bot 113:7–18

    Article  CAS  Google Scholar 

  • Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C et al (2014) Interproscan 5: genome-scale protein function classification. Bioinformatics 3:1236–1240

    Article  CAS  Google Scholar 

  • Juárez-Hernández EO, Casados-Vázquez LE, del Rincón-Castro MC, Salcedo-Hernández R, Bideshi DK, Barboza-Corona JE (2015) Bacillus thuringiensis subsp. israelensis producing endochitinase ChiA74deltasp inclusions and its improved activity against Aedes aegypti. J Appl Microbiol 119:1692–1699

    Article  CAS  Google Scholar 

  • Kim BS, Moon SS, Hwang BK (1999) Isolation, antifungal activity, and structure elucidation of the glutarimide antibiotic, streptimidone, produced by Micromonospora coerulea. J Agric Food Chem 47:3372–3380

    Article  CAS  Google Scholar 

  • Kim W, Hong YP, Yoo JH, Lee WB, Choi CS, Chung SI (2002) Genetic relationships of Bacillus anthracis and closely related species based on variable-number tandem repeat analysis and BOX-PCR genomic fingerprinting. FEMS Microbiol Lett 207:21–27

    Article  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320

    Article  CAS  Google Scholar 

  • Knerr PJ, van der Donk WA (2012) Discovery, biosynthesis, and engineering of lantipeptides. Annu Rev Biochem 81:479–505

    Article  CAS  Google Scholar 

  • Kobayashi DY, Reedy RM, Bick J, Oudemans PV (2002) Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Appl Environ Microbiol 68:1047–1054

    Article  CAS  Google Scholar 

  • Kyogoku K, Sekiguchi J (1996) Cloning and sequencing of a new holin-encoding gene of Bacillus licheniformis. Gene 168:61–65

    Article  CAS  Google Scholar 

  • Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  Google Scholar 

  • Liu M, Cai QX, Liu HZ, Zhang BH, Yan JP, Yuan ZM (2002) Chitinolytic activities in Bacillus thuringiensis and their synergistic effects on larvicidal activity. J Appl Microbiol 93:374–379

    Article  CAS  Google Scholar 

  • Liu Z, Budiharjo A, Wang P, Shi H, Fang J, Borriss R et al (2013) The highly modified microcin peptide plantazolicin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42. Appl Microbiol Biotechnol 97:10081–10090

    Article  CAS  Google Scholar 

  • Liu G, Kong Y, Fan Y, Geng C, Peng D, Sun M (2017) Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria. J Biotechnol 249:20–24

    Article  CAS  Google Scholar 

  • Lopes RBM (2017) Quem é o chefe aqui? Os avanços biotecnológicos e perspectivas genômicas do uso de Bacillus thuringiensis na agricultura. Novas Edições Acadêmicas. Chișinău, pp 45–51

  • Lopes RBM, Costa LEO, Vanetti MC, de Araujo EF, de Queiroz MV (2015) Endophytic bacteria isolated from common bean (Phaseolus vulgaris) exhibiting high variability showed antimicrobial activity and quorum sensing inhibition. Curr Microbiol 71:509–516

    Article  CAS  Google Scholar 

  • Lopes R, Cerdeira LT, Fernandes MR, Perez-Chaparro PJ, McCulloch JA, Lincopan N (2017) Draft genome sequence of a CTX-M-15-producing endophytic Klebsiella pneumoniae ST198 isolate from commercial lettuce. J Glob Antimicrob Resist 10:19–20

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  Google Scholar 

  • Lu X, Yuan Y, Xue XL, Zhang GP, Zhou SN (2006) Identification of the critical role of Tyr-194 in the catalytic activity of a novel N-acyl-homoserine lactonase from marine Bacillus cereus strain Y2. Curr Microbiol 53:346–350

    Article  CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    Article  CAS  Google Scholar 

  • Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18

    Article  Google Scholar 

  • Maksimov MO, Pan SJ, James Link A (2012) Lasso peptides: structure, function, biosynthesis, and engineering. Nat Prod Rep 29:996–1006

    Article  CAS  Google Scholar 

  • Martínez E, Sudrer JE, Rodríguez A (1995) Antagonistic activities of wild lactococcal strains isolated from homemade cheeses. J Food Prof 58:1118–1123

    Article  Google Scholar 

  • Martínez B, Suárez JE, Rodríguez A (1996) Lactococcin 972: a homodimeric lactococcal bacteriocin whose primary target is not the plasma membrane. Microbiology 142:2393–2398

    Article  Google Scholar 

  • Martínez B, Fernández M, Suárez JE, Rodríguez A (1999) Synthesis of lactococcin 972, a bacteriocin produced by Lactococcus lactis IPLA 972, depends on the expression of a plasmid-encoded bicistronic operon. Microbiology 145:3155–3161

    Article  Google Scholar 

  • Martínez B, Bottiger T, Schneider T, Rodríguez A, Sahl HG, Wiedemann I (2008) Specific interaction of the unmodified bacteriocin lactococcin 972 with the cell wall precursor lipid II. Appl Environ Microbiol 74:4666–4670

    Article  CAS  Google Scholar 

  • McAuliffe O, Ross RP, Hill C (2001) Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev 25:285–308

    Article  CAS  Google Scholar 

  • Melby JO, Nard NJ, Mitchell DA (2011) Thiazole/oxazole-modified microcins: complex natural products from ribosomal templates. Curr Opin Chem Biol 15:369–378

    Article  CAS  Google Scholar 

  • Melnick RL, Zidack NK, Bailey BA, Maximova SN, Guiltinan M, Backman PA (2008) Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biol Control 46:46–56

    Article  Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Bisht JK, Kundu S, Gupta HS (2009) Coinoculation of Bacillus thuringiensis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World J Microbiol Biotechnol 25:753–761

    Article  Google Scholar 

  • Mondol MA, Shin HJ, Islam MT (2013) Diversity of secondary metabolites from marine Bacillus species: chemistry and biological activity. Mar Drugs 11:2846–2872

    Article  CAS  Google Scholar 

  • Mukhopadhyay J, Sineva E, Knight J, Levy RM, Ebright RH (2004) Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNA polymerase secondary channel. Mol Cell 14:739–751

    Article  CAS  Google Scholar 

  • Murphy K, O’Sullivan O, Rea MC, Cotter PD, Ross RP, Hill C (2011) Genome mining for radical SAM protein determinants reveals multiple sactibiotic-like gene clusters. PLoS ONE 6:e20852

    Article  CAS  Google Scholar 

  • Ni H, Zeng S, Qin X, Sun X, Zhang S, Zhao X et al (2015) Molecular docking and site-directed mutagenesis of a Bacillus thuringiensis chitinase to improve chitinolytic, synergistic lepidopteran-larvicidal and nematicidal activities. Int J Biol Sci 11:304–315

    Article  CAS  Google Scholar 

  • Nizet V, Beall B, Bast DJ, Datta V, Kilburn L, Low DE et al (2000) Genetic locus for streptolysin S production by group A streptococcus. Infect Immun 68:4245–4254

    Article  CAS  Google Scholar 

  • Ouyang LJ, Li LM (2016) Effects of an inducible aiiA gene on disease resistance in Eucalyptus urophylla × Eucalyptus grandis. Transgenic Res 25:441–452

    Article  CAS  Google Scholar 

  • Pleban S, Chernin L, Chet I (1997) Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett Appl Microbiol 25:284–288

    Article  CAS  Google Scholar 

  • Priest FG, Barker M, Baillie LW, Holmes EC, Maiden MC (2004) Population structure and evolution of the Bacillus cereus group. J Bacteriol 186:7959–7970

    Article  CAS  Google Scholar 

  • Quiñones B, Dulla G, Lindow SE (2005) Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol Plant Microbe Interact 18:682–693

    Article  CAS  Google Scholar 

  • Raddadi N, Cherif A, Ouzari H, Marzorati M, Brusetti L, Boudabous A et al (2007) Bacillus thuringiensis beyond insect biocontrol: plant growth promotion and biosafety of polyvalent strains. Ann Microbiol 57:481–494

    Article  CAS  Google Scholar 

  • Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricke WF, Gajer P et al (2008) The pangenome structure of Escherichia coli: Comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 190:6881–6893

    Article  CAS  Google Scholar 

  • Reyes-Ramirez A, Escudero-Abarca BI, Aguilar-Uscanga G, Hayward-Jones PM, Barboza-Corona JE (2004) Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J Food Sci 69:M131-M134

    Google Scholar 

  • Sánchez C, Hernández de Rojas A, Martínez B, Arguelles ME, Suárez JE, Rodríguez A et al (2000) Nucleotide sequence and analysis of pBL1, a bacteriocin-producing plasmid from Lactococcus lactis IPLA 972. Plasmid 44:239–249

    Article  CAS  Google Scholar 

  • Sandiford SK (2014) Advances in the arsenal of tools available enabling the discovery of novel lantibiotics with therapeutic potential. Expert Opin Drug Discov 9:283–297

    Article  CAS  Google Scholar 

  • Solovyev V, Salamov A (2011) Automatic annotation of microbial genomes and metagenomic sequences. In: Li RW (ed) Metagenomics and its applications in agriculture, biomedicine and environmental studies. Nova Science Publishers, Hauppauge, pp 61–78

    Google Scholar 

  • Sullivan TJ, Rodstrom J, Vandop J, Librizzi J, Graham C, Schardl CL et al (2007) Symbiont-mediated changes in Lolium arundinaceum inducible defenses: evidence from changes in gene expression and leaf composition. New Phytol 176:673–679

    Article  CAS  Google Scholar 

  • Tang Y, Zou J, Zhang L, Li Z, Ma C, Ma N (2012) Anti-fungi activities of Bacillus thuringiensis H3 chitinase and immobilized chitinase particles and their effects to rice seedling defensive enzymes. J Nanosci Nanotechnol 12:8081–8086

    Article  CAS  Google Scholar 

  • Tang M, Sun X, Zhang S, Wan J, Li L, Ni H (2017) Improved catalytic and antifungal activities of Bacillus thuringiensis cells with surface display of Chi9602deltasp. J Appl Microbiol 122:106–118

    Article  CAS  Google Scholar 

  • Tanuja R, Bisht SC, Mishra PK (2013) Ascending migration of endophytic Bacillus thuringiensis and assessment of benefits to different legumes of N.W. Himalayas. Eur J Soil Biol 56:56–64

    Article  Google Scholar 

  • Ticknor LO, Kolsto AB, Hill KK, Keim P, Laker MT, Tonks M et al (2001) Fluorescent amplified fragment length polymorphism analysis of Norwegian Bacillus cereus and Bacillus thuringiensis soil isolates. Appl Environ Microbiol 67:4863–4873

    Article  CAS  Google Scholar 

  • Turano H, Gomes F, Barros-Carvalho GA, Lopes R, Cerdeira L, Netto LES et al (2017) Tn6350, a novel transposon carrying pyocin S8 genes encoding a bacteriocin with activity against carbapenemase-producing Pseudomonas aeruginosa. Antimicrob Agents Chemother 61:e00100-17

    Article  Google Scholar 

  • Ugras S, Sezen K, Kati H, Demirbag Z (2013) Purification and characterization of the bacteriocin Thuricin Bn1 produced by Bacillus thuringiensis subsp. kurstaki Bn1 isolated from a hazelnut pest. J Microbiol Biotechnol 23:167–176

    Article  CAS  Google Scholar 

  • van Heel AJ, de Jong A, Montalban-Lopez M, Kok J, Kuipers OP (2013) Bagel3: automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Res 41:W448-W453

    Google Scholar 

  • Vieira C, Paula Júnior TJD, Bórem A (2006) Feijão, 2nd edn. UFV, Viçosa, pp 241–263

    Google Scholar 

  • Vilas-Bôas GFLT, Vilas-Bôas LA, Lereclus D, Arantes OMN (1998) Bacillus thuringiensis conjugation under environmental conditions. FEMS Microbiol Ecol 25:369–374

    Article  Google Scholar 

  • Von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482

    Article  CAS  Google Scholar 

  • Wang J, Ma H, Ge X, Zhang J, Teng K, Sun Z et al (2014) Bovicin HJ50-like lantibiotics, a novel subgroup of lantibiotics featured by an indispensable disulfide bridge. PLoS ONE 9:e97121

    Article  CAS  Google Scholar 

  • Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404

    Article  CAS  Google Scholar 

  • Wilson MK, Abergel RJ, Raymond KN, Arceneaux JE, Byers BR (2006) Siderophores of Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis. Biochem Biophys Res Commun 348:320–325

    Article  CAS  Google Scholar 

  • Xin B, Zheng J, Xu Z, Song X, Ruan L, Peng D et al (2015) The Bacillus cereus group is an excellent reservoir of novel lanthipeptides. Appl Environ Microbiol 81:1765–1774

    Article  CAS  Google Scholar 

  • Yang J, Zhu X, Cao M, Wang C, Zhang C, Lu Z et al (2016) Genomics-inspired discovery of three antibacterial active metabolites, aurantinins B, C, and D from compost-associated Bacillus subtilis fmb60. J Agric Food Chem 64:8811–8820

    Article  CAS  Google Scholar 

  • Yu J, Hu S, Ma K, Sun L, Hu H, Zou F et al (2014) Ribosomal protein S29 regulates metabolic insecticide resistance through binding and degradation of CYP6N3. PLoS ONE 9:e94611

    Article  CAS  Google Scholar 

  • Zhang LH (2003) Quorum quenching and proactive host defense. Trends Plant Sci 8:238–244

    Article  CAS  Google Scholar 

  • Zhao X, Kuipers OP (2016) Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genom 17:882

    Article  Google Scholar 

  • Zhu S, Hegemann JD, Fage CD, Zimmermann M, Xie X, Linne U et al (2016) Insights into the unique phosphorylation of the lasso peptide paeninodin. J Biol Chem 291:13662–13678

    Article  CAS  Google Scholar 

  • Ziedaite G, Daugelavicius R, Bamford JK, Bamford DH (2005) The holin protein of bacteriophage PRD1 forms a pore for small-molecule and endolysin translocation. J Bacteriol 187:5397–5405

    Article  CAS  Google Scholar 

  • Zwick ME, Joseph SJ, Didelot X, Chen PE, Bishop-Lilly KA, Stewart AC et al (2012) Genomic characterization of the Bacillus cereus sensu lato species: backdrop to the evolution of Bacillus anthracis. Genome Res 22:1512–1524

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Vieira de Queiroz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, R., Cerdeira, L., Tavares, G.S. et al. Genome analysis reveals insights of the endophytic Bacillus toyonensis BAC3151 as a potentially novel agent for biocontrol of plant pathogens. World J Microbiol Biotechnol 33, 185 (2017). https://doi.org/10.1007/s11274-017-2347-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2347-x

Keywords

Navigation