Skip to main content
Log in

Isolation of novel leaf-inhabiting endophytic bacteria in Arabidopsis thaliana and their antagonistic effects on phytophathogens

  • Short Communication
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Bacterial endophytes benefit the host with protection against abiotic and biotic stresses and through increased plant growth. In this study, we screened novel endophytes for the ability to endophytically inhabit leaf tissues. Four endophytic bacteria were screened from the apoplastic fluids extracted from the uninfected upper leaves of Arabidopsis thaliana 3 days postinoculation (dpi) with Pseudomonas syringae pv. tomato DC3000 (Pst). Under sterile plant growth conditions, we showed that the four isolates proliferated intercellularly in the leaf tissues of A. thaliana. Based on 16S rRNA sequencing analysis, the identities of the inoculated endophytes and the re-isolates from the leaf tissues were confirmed. Among the isolates, the two species of Rhodococcus were the first members of the genus to be identified as leaf-inhabiting endophytes. Additionally, three of the isolates showed antagonistic activities, with different levels of activity, against Fusarium oxysporum pv. conglutinans (F.o.) and/or Pst. Furthermore, the application of one isolate, Bacillus cereus KB1, on tomato plants significantly increased the disease resistance to Botrytis cinerea and Pst. In combination, these results indicate that these endophytic isolates can be used to develop potential biocontrol agents against a variety of pathogenic fungi and bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8:e56329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Devi SS, Sethu M, Priya PG (2014) Effect of Artemia franciscana on the removal of nickel by bioaccumulation. Biocontrol Sci 19:79–84

    Article  CAS  PubMed  Google Scholar 

  • Di Gioia D, Michelles A, Pierini M, Bogialli S, Fava F, Barberio C (2007) Selection and characterization of aerobic bacteria capable of degrading commercial mixtures of low-ethoxylated nonylphenols. J Appl Microbiol 104:231–242

    Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    Article  CAS  PubMed  Google Scholar 

  • Han JI, Choi HK, Lee SW, Orwin PM, Kim J, Laroe SL, Kim TG, O’Neil J, Leadbetter JR, Lee SY, Hur CG, Spain JC, Ovchinnikova G, Goodwin L, Han C (2011) Complete genome sequence of the metabolically versatile plant growth-promoting endophyte Variovorax paradoxus S110. J Bacteriol 193:1183–1190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoshikawa K, Endo S, Mizuniwa S, Makabe S, Takahashi H, Nakamura I (2012) Transgenic tobacco plants expressing endo-β-mannanase gene from deep-sea Bacillus sp. JAMB-602 strain confer enhanced resistance against fungal pathogen (Fusarium oxysporum). Plant Biotechnol Rep 6:243–250

    Article  Google Scholar 

  • Hung PQ, Annapurna K (2004) Isolation and characterization of endophytic bacteria in soybean (Glycine sp.). Omonrice 12:92–101

    Google Scholar 

  • Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    Article  PubMed  Google Scholar 

  • Janarthine RS, Eganathan S, Balasubramanian T (2010) Plant growth promoting of endophytic Bacillus cereus isolated from the Pneumatophores of Avicennia marina. Int J Curr Res 5:9–13

    Google Scholar 

  • Jasim B, Joseph AA, John CJ, Mathew J, Radhakrishnan EK (2013) Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech 4:197–204

    Article  PubMed Central  Google Scholar 

  • Kistler HC, Alabouvette C, Baayen RP, Bentley S, Brayford D, Coddington A, Correll J, Daboussi M-J, Elias K, Fernandez D, Gordon TR, Katan T, Kim HG, Leslie JF, Martyn RD, Migheli Q, Moore NY, O’Donnell K, Ploetz RC, Rutherford MA, Summerell B, Waalwijk C, Woo S (1997) Systematic numbering of vegetative compatibility groups in the plant pathogenic fungus Fusarium oxysporum. Phytopathology 88:30–32

    Article  Google Scholar 

  • Kitamura Y, Sawabe E, Ohkusu K, Tojo N, Tohda S (2012) First report of sepsis caused by Rhodococcus corynebacterioides in a patient with myelodysplastic syndrome. J Clin Microbiol 50:1089–1091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kong K, Makabe S, Ntui V, Khan R, Nakamura I (2014) Synthetic chitinase gene driven by root-specific LjNRT2 and AtNRT2.1 promoters confers resistance to Fusarium oxysporum in transgenic tobacco and tomato. Plant Biotechnol Rep 8:151–159

    Article  Google Scholar 

  • Lee LH, Cheah YK, Mohd Sidik S, Ab Mutalib NS, Tang YL, Lin HP, Hong K (2012) Molecular characterization of Antarctic actinobacteria and screening for antimicrobial metabolite production. World J Microbiol Biotechnol 28:2125–2137

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Kim YC, Choi D, Park JM (2013) Identification of novel pepper genes involved in Bax- or INF1-mediated cell death responses by high-throughput virus-induced gene silencing. Int J Mol Sci 14:22782–22795

    Article  PubMed Central  PubMed  Google Scholar 

  • Liberman L, Sozzani R, Benfey P (2012) Integrative systems biology: an attempt to describe a simple weed. Curr Opin Plant Biol 15:162–167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mengiste T, Chen X, Salmeron J, Dietrich R (2003) The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15:2551–2565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nilsson J, Svensson B, Ekelund K, Christiansson A (1998) A RAPD-PCR method for large-scale typing of Bacillus cereus. Lett Appl Microbiol 27:168–172

    Article  CAS  PubMed  Google Scholar 

  • Park S-Y, Yang S-H, Choi S-K, Kim J-G, Park S-H (2007) Isolation and characterization of endophytic bacteria from rice root cultivated in Korea. Korean J Microbiol Biotechnol 35:1–10

    CAS  Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Sadfi N, Chérif M, Hajlaoui MR, Boudabbous A, Bélanger R (2002) Isolation and partial purification of antifungal metabolites produced by Bacillus cereus. Ann Microbiol 52:323–337

    CAS  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Boyle C (2006) Microbial root endophytes. Springer, Berlin

    Book  Google Scholar 

  • Wang X, Wang L, Wang J, Jin P, Liu H, Zheng Y (2014) Bacillus cereus AR156-induced resistance to Colletotrichum acutatum is associated with priming of defense responses in loquat fruit. PLoS One 9:e112494

    Article  PubMed Central  PubMed  Google Scholar 

  • Weigel D, Glazebrook J (2002) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S rDNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Yao J, Withers J, He SY (2013) Pseudomonas syringae infection assays in Arabidopsis. In: Goossens A, Pauwels L (eds) Jasmonate signaling. Springer, Germany, pp 63–88

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was supported by the Cabbage Genomics Assisted Breeding Supporting Center funded by the Ministry for Food, Agriculture, and Forestry of the Korean Government and by the KRIBB initiative program to JMP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Mee Park.

Additional information

Chi Eun Hong, Sung Hee Jo, and Ju Yeon Moon contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 1577 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, C.E., Jo, S.H., Moon, J.Y. et al. Isolation of novel leaf-inhabiting endophytic bacteria in Arabidopsis thaliana and their antagonistic effects on phytophathogens. Plant Biotechnol Rep 9, 451–458 (2015). https://doi.org/10.1007/s11816-015-0372-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-015-0372-5

Keywords

Navigation