Skip to main content
Log in

Effect of red and blue light emitting diodes “CRB-LED” on in vitro organogenesis of date palm (Phoenix dactylifera L.) cv. Alshakr

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of the present study is to determine the effect of light source on enhancement of shoot multiplication, phytochemicals, as well as, antioxidant enzyme activities of in vitro cultures of date palm cv. Alshakr. In vitro-grown buds were cultured on Murashige and Skoog (MS) medium and incubated under a conventional white fluorescent light (control), and combinations of red + blue light emitting diode (18:2) (CRB-LED). Results revealed that the treatment of CRB-LED showed a significant increase in the number of shoots compared with the white florescent light. Total soluble carbohydrate “TSCH” (7.10 mg g−1 DW.), starch (1.63 mg g−1 DW.) and free amino acids (2.90 mg g−1 DW.) were significantly higher in CRB-LED (p < 0.05). Additionally, CRB-LED induced a higher peroxidase activity (25.50 U ml−1) compared with the white fluorescent light treatment (19.74 U ml−1) as control treatment. Potassium, magnesium and sodium contents in (3.62, 13.99 and 2.76 mg g−1 DW.) were increased in in vitro shoots under CRB-LED treatment in comparison with fluorescent light (p < 0.05). Protein profile showed the appearance of newly bands with the molecular weight of 38 and 60 kDa at the treatment CRB-LED compared with control treatment. Our results demonstrate the positive effects of CRB-LED light during the course of date palm tissue cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdullahil Baque M, Yun-Kyong S, Elshmari T, Eun-Jung L, Paek KY (2010) Effect of light quality, sucrose and coconut water concentration on the micropropagation of Calanthe hybrids (‘Bukduseong’ £ ‘Hyesung’ and ‘Chunkwang’ £ ‘Hyesung’). AJCS 5(10):1247–1254

    Google Scholar 

  • Al Khateeb AA, Ali-Dinar HM (2002) Date palm in Kingdom of Saudi Arabia: cultivation, production and processing. Translation, Authorship and Publishing Center, King Faisal University, Kingdom of Saudi Arabia, p 188

    Google Scholar 

  • Al-Khalifah NS, Askari E, Shanavaskhan AE (2013) Date palm tissue culture and genetical Identification of cultivars grown in Saudi Arabia. KACST Press, Riyadh, p 207

    Google Scholar 

  • Alkhateeb A (2008) Comparison effects of sucrose and date palm syrup on somatic embryogenesis of date palm (Phoenix dactylifera L.). Am J Biotechnol Biochem 4(1):19–23

    Article  CAS  Google Scholar 

  • Allam AI, Hollis JP (1972) Sulfide inhibition of oxidase in rice roots. Phytopathology 62:634–639

    Article  CAS  Google Scholar 

  • Al-Mayahi AMW (2014) Thidiazuron induced in vitro bud organogenesis of the date palm (Phoenix dactylifera L.) cv. Hillawi. Afr J Biotechnol 13(35):3581–3590

    Article  CAS  Google Scholar 

  • Bach A, Świderski A (2000) The effect of light quality on organogenesis of Hyacinthus orientalis L in vitro. Acta Biol Cracov Ser Bot 42/1:115–120

    Google Scholar 

  • Bekheet S (2013) Direct organogenesis of date palm (Phoenix dactylifera L.) for propagation of true-to-type plants. Sci Agric 4(3):85–92

    CAS  Google Scholar 

  • Biswas MK, Hossain M, Ahmed MB, Roy UK, Karim R, Razvy MA, Salahin M, Islam R (2007) Multiple shoots regeneration of strawberry under various colour illuminations. Am-Euras J Sci Res 2(2):133–135

    Google Scholar 

  • Black CA (1968) Methods of Sei analysis part 1. Physical properties. Am. Soc. Agron. Inc. Publishe, Madison Wisconin, USA pollen and flowers of five male cultivars of Iraqi clate palm (Phoenix ductylifera L.). Date palm J 2(2):111–207

  • Britz SJ, Sager JC (1990) Photomorphogenesis and photoassimilation in soybean and sorghum grown under broad spectrum or blue-deficient light sources. Plant Physiol 94:448–450

    Article  CAS  Google Scholar 

  • Cresser MS, Parsons JW (1979) Sulphuric perchloric acid digestion of plant material for the determination of nitrogen, phosphours, potassium, calcium and magnesium. Anal Chem Acta 109:43–436

    Article  Google Scholar 

  • Da Silva JAT (2014) Photoauto-, Photohetero- and photomixotrophic in vitro propagation of papaya (Carica papaya L.) and response of seed and seedlings to light-emitting diodes. Tham Int J Sci Technol 19(1):57–71

    Google Scholar 

  • Estrada B, Pomar F, Diaz J, Merino F, Bernal MA (1999) Pungency level in fruits of the Padron pepper with different water supply. Sci Hortic 81:385–396

    Article  Google Scholar 

  • Felker FC, Doehlert DC, Eskins K (1995) Effects of red and blue-light on the composition and morphology of maize kernels grown in-vitro. Plant Cell Tissue Organ 42(2):147–152

    Article  Google Scholar 

  • Frederick CF, Doehlert D, Kenneth Eskins L (1995) Effects of red and blue light on the composition and morphology of maize kernels grown in vitro. Plant Cell Tissue Organ Cult 42:147–152

    Article  Google Scholar 

  • Gabryszewska E, Rudnicki R (1995) The influence of light quality on the shoot proliferation and rooting of Gerbera jamesonii in vitro. Acta Agrobot 48(2):105–111

    Article  Google Scholar 

  • Giedrė S, Aušra B, Akvilė U, Gintarė Š, Pavelas D (2010) The effect of red and blue light component on the growth and development of frigo strawberries. Zem-Agric 97(2):99–104

    Google Scholar 

  • Harun AN, Ani NN, Ahmad R, Azmi NS (2013) Red and blue LED with pulse lighting control treatment for Brassica chinensis in indoor farming. In: Open systems (ICOS), 2013 IEEE conference. pp 231–236

  • Heo JW, Shin KS, Kim SK, Paek KY (2006) Light quality affects in vitro growth of grape ‘Teleki 5BB7’. J Plant Biol 49:276–280

    Article  Google Scholar 

  • Heselmans M (1997) Setting research priorities through an international date palm network. Biotechnol Dev Monit 30:1820–1822

    Google Scholar 

  • Huimin L, Xu Z, Tang C (2010) Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell Tissue Organ 103(2):155–163

    Article  Google Scholar 

  • Kapchina-Toteva VM, Iakimova ET, Chavdarov IP (2005) Effect of cytokinins on in vitro cultured exacum affine balif. In: Gruev B, Nikolova M, Donev A (eds) Proceedings of the Balkan scientific conference of biology in Plovdiv (Bulgaria) from 19th–12th of May, pp 714–722

  • Karataş M, Aasim M (2014) Efficient in vitro regeneration of medical aquatic plant water hyssop (Bacopa monnieri L. Pennell). Pak J Agric Sci 51(3):667–672

    Google Scholar 

  • Kim HH, Goins GD, Wheeler RM, Sager JC (2004) Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. HortScience 39:1617–1622

    Google Scholar 

  • Kim K, Kook HS, Jang YJ, Lee WH, Kannan SK, Chae JC, Lee KJ (2013) The effect of blue-light-emitting diodes on antioxidant properties and resistance to Botrytis cinerea in tomato. J Plant Pathol Microb 4(9):203

    CAS  Google Scholar 

  • Kowallik W (1987) Blue light effect on carbohydrate and protein metabolism. In: Senger H (ed) Blue light responses: phenomena and occurrence in plants and microorganisms, vol II. CRC Press, Boca Raton, pp 7–16

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lefsrud MG, Kopsell DA, Sams CE (2008) Irradiance from distinct wave-length light-emitting diodes affect secondary metabolites in kale. HortScience 43:2243–2244

    Google Scholar 

  • Li H, Xu Z, Tang C (2010) Effect of light-emitting diodes on growth and morpho-genesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell Tissue Organ Cult 103:155–163

    Article  Google Scholar 

  • Lin KH, Huang MY, Huang WD, Hsu MH, Yang ZW, Yang CM (2013) The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci Hortic 150:86–91

    Article  Google Scholar 

  • Mamaghani MS, Shojaei TR, Matinizadeh M, Forootan M (2010) Microsatellite loci and peroxidase alleles correlation in somaclonal variation of Eucalyptus microtheca F. Muell. Afr J Biotechnol 9(29):4521–4545

    CAS  Google Scholar 

  • Manivannan A, Soundararajan P, Halimah N, Ho Ko C, Jeong BR (2015) Blue LED light enhances growth, phytochemical contents, and antioxidant enzyme activities of Rehmannia glutinosa cultured in vitro. Hortic Environ Biotechnol 56(1):105–113

    Article  CAS  Google Scholar 

  • Maxwell DP, Bateman DF (1967) Changes in the activity of some oxidases in extracts of Rhizoctonia infected bean hypocotyls in relation to lesion maturation. Phytopathology 57:132–136

    CAS  Google Scholar 

  • Mengxi L, Zhigang X, Yang Y, Yijie F (2011) Effects of different spectral lights on Oncidium PLBs induction, proliferation, and plant regeneration. Plant Cell Tissue Organ Cult 106:1–10

    Article  Google Scholar 

  • Moore S, Stein WH (1948) Photometric ninhydrin method for use in the chromatography of amino acids. J Biol Chem 176(1):367–388

    CAS  Google Scholar 

  • Morris DL (1948) Quantitative determination of carbohydrates with dreywood’s anthrone reagent. Science 107(2775):254–255

    Article  CAS  Google Scholar 

  • Morrow RC (2008) LED lighting in horticulture. HortScience 43(7):1947–1950

    Google Scholar 

  • Moyer RA, Hummer KE, Finn CE, Frei B, Wrolstad RE (2002) Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: vaccinium, rubus, and ribes. J Agric Food Chem 50:519–525

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murphy T, Riley JRJ (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chem Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nhut DT (2002) In vitro growth and physiological aspects of some horticultural plantlets cultured under red and blue light-emitting diodes (LEDs). Doctoral thesis. Kagawa University, Kagawa, Japan

  • Nhut DT, Takamura T, Watanabe H, Murakami A, Murakami K, Tanaka M (2002) Sugar-free micropropagation of Eucalyptus citriodora using light-emitting diode (LEDs) and film-rockwool culture system. Environ Control Biol 40:147–155

    Google Scholar 

  • Olle M, Virsile A (2013) The effects of light emitting diode on greenhouse plant growth and quality. Agric Food Sci 22:223–234

    Google Scholar 

  • Page AL, Miller RH, Keeny D (1982) Methods of soil analysis, part 2, pub soil Sci-Am. Ine Madison, IW, USA

  • Ranwala NKD, Decoteau DR, Ranwala AP, Miller WB (2002) Changes in soluble carbohydrates during phytochrome-regulated petiole elongation in watermelon seedlings. Plant Growth Reg 38:157–163

    Article  Google Scholar 

  • Reda EA, Moghaieb REA, Abdel-Hadi AHA, Ahmed MRA (2011) Genetic stability among date palm plantlets regenerated from petiole explants. Afr J Biotechnol 10(65):14311–14318

    Article  Google Scholar 

  • Rocha PSG, Oliveira RP, Scivittaro WB, Santos UL (2010) Diodos Emissores de luz e concentrações de BAP na multiplicação in vitro de morangueiro. Ciência Rural 40:1922–1928

    Article  Google Scholar 

  • Sharifi G, Ebrahimzadeh H (2010) Changes of antioxidant enzyme activity and isoenzyme profiles during in vitro shoot formation in saffron (Crocus sativus L.). Acta Biol Hung 61:73–89

    Article  CAS  Google Scholar 

  • Takahashi K, Fujino K, Kikuta Y, Koda Y (1995) Involvement of the accumulation of sucrose and the synthesis of cell-wall polysaccharides in the expansion of potato cells in response to jasmonic acid. Plant Sci 111(1):11–18

    Article  CAS  Google Scholar 

  • Tanaka M, Sakanishi Y (1980) Clonal propagation of Phalaenopsis through tissue culture. In: Tanaka M, Saito K (eds) Proceedings of the 19th world orchid conference, Tokyo, Japan, p 215

  • Wang H, Gu M, Cui J, Shi K, Zhou Y, Yu J (2009) Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J Photochem Photobiol B Biol 96:30–37

    Article  CAS  Google Scholar 

  • Wilson DA, Weigel RC, Wheeler RM, Sager JC (1993) Light spectral quality effects on the growth of potato (Solanum tuberosum L.) nodal cuttings in vitro. In Vitro Cell Dev Biol 29(1):5–8

    Article  Google Scholar 

  • Wu M, Hou C, Jiang C, Wang Y, Wang C, Chen H, Chang H (2007) A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem 101(4):1753–1758

    Article  CAS  Google Scholar 

  • Zheng J, Hu MJ, Guo YP (2008) Regulation of photosynthesis by light quality and its mechanism in plant. Chin J Appl Ecol 19:1619–1624

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Madi Waheed Al-Mayahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Mayahi, A.M.W. Effect of red and blue light emitting diodes “CRB-LED” on in vitro organogenesis of date palm (Phoenix dactylifera L.) cv. Alshakr. World J Microbiol Biotechnol 32, 160 (2016). https://doi.org/10.1007/s11274-016-2120-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2120-6

Keywords

Navigation