Skip to main content
Log in

A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation

  • REVIEW
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The threat of heavy metal pollution to environmental health is getting worldwide attention due to their persistence and non-biodegradable nature. Ineffectiveness of various physicochemical methods due to economical and technical constraints resulted in the search for a cost-effective and eco-friendly biological technique for heavy metal removal from the environment. The two effective biotic methods used are biosorption and bioaccumulation. A comparison between these two processes demonstrated that biosorption is a better heavy metal removal process than bioaccumulation. This is due to the intoxication of heavy metal by inhibiting their entry into the microbial cell. Genes and enzymes related to bioremoval process are also discussed. On comparing the removal rate, bacteria are surpassed by algae and fungi. The aim of this review is to understand the biotic processes and to compare their metal removal efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ackerley DF, Gonzalez CF, Keyhan M, Blake R, Matin A (2004) Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environ Microbiol 6(8):851–860

    Article  CAS  Google Scholar 

  • Aguilar-Barajas E, Paluscio E, Cervantes C, Rensing C (2008) Expression of chromate resistance genes from Shewanella sp. strain ANA-3 in Escherichia coli. FEMS Microbiol Lett 285(1):97–100

    Article  CAS  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    Article  CAS  Google Scholar 

  • Aksu Z, Donmez G (2005) Combined effects of molasses sucrose and reactive dye on the growth and dye bioaccumulation properties of Candida tropicalis. Process Biochem 40:2443–2454

    Article  CAS  Google Scholar 

  • Aksu Z, Sag Y, Kutsal T (1992) The biosorption of copper (II) by C. vulgaris and Z. ramigera. Environ Technol 13:579–586

    Article  CAS  Google Scholar 

  • Al-Garni SM, Ghanem KM, Bahobail AS (2009) Biosorption characteristics of Aspergillus fumigatus in removal of cadmium from an aqueous solution. Afr J Biotechnol 8:4163–4172

    CAS  Google Scholar 

  • Al-Rub FA, El-Naas MH, Benyahia F, Ashour I (2004) Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Process Biochem 39(11):1767–1773

    Article  CAS  Google Scholar 

  • Andreazza R, Okeke BC, Pieniz S, Brandelli A, Lambais MR, Camargo FA (2011) Bioreduction of Cu(II) by cell-free copper reductase from a copper resistant Pseudomonas sp. NA. Biol Trace Elem Res 143(2):1182–1192

    Article  CAS  Google Scholar 

  • Atkinson BW, Bux F, Kasan HC (1998) Considerations for application of biosorption technology to remediate metal-contaminated industrial effluents. Water SA 24(2):129–135

    CAS  Google Scholar 

  • Bae W, Chen W, Mulchandani A, Mehra RK (2000) Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnol Bioeng 70(5):518–524

    Article  CAS  Google Scholar 

  • Batayneh AT (2012) Toxic (aluminum, beryllium, boron, chromium and zinc) in groundwater: health risk assessment. Int J Environ Sci Technol 9(1):153–162

    Article  CAS  Google Scholar 

  • Bayramoglu G, Arica MY (2008) Removal of heavy mercury(II), cadmium(II) and zinc(II) metal ions by live and heat inactivated Lentinus edodes pellets. Chem Eng J 143:133–140

    Article  CAS  Google Scholar 

  • Beveridge TJ (1989) The role of cellular design in bacterial metal accumulation and mineralization. Ann Rev Microbiol 43:147–171

    Article  CAS  Google Scholar 

  • Blindauer CA (2011) Bacterial metallothioneins: past, present, and questions for the future. J Biol Inorg Chem 16(7):1011–1024

    Article  CAS  Google Scholar 

  • Branco R, Chung AP, Johnston T, Gurel V, Morais P, Zhitkovich A (2008) The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium (VI) and superoxide. J Bacteriol 190(21):6996–7003

    Article  CAS  Google Scholar 

  • Brierley CL (1990) Bioremediation of metal-contaminated surface and groundwaters. Geomicro J 8:201–223

    Article  CAS  Google Scholar 

  • Brown NL, Barrett SR, Camakaris J, Lee BT, Rouch DA (1995) Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol Microbiol 17(6):1153–1166

    Article  CAS  Google Scholar 

  • Busenlehner LS, Pennella MA, Giedroc DP (2003) The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev 27(2–3):131–143

    Article  CAS  Google Scholar 

  • Cabral JPS (1992) Selective binding of metal ions to Pseudomonas syringae cells. Microbios 71:47–53

    CAS  Google Scholar 

  • Cabuk A, Iulhan S, Filik C, Caliskan F (2005) Pb2+ biosorption by pretreated fungal biomass. Turk J Biol 29:23–28

    CAS  Google Scholar 

  • Cha JS, Cooksey DA (1991) Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc Natl Acad Sci 88(20):8915–8919

    Article  CAS  Google Scholar 

  • Chatterjee SK, Bhattacharjee I, Chandra G (2010) Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans. J Hazard Mater 175(1):117–125

    Article  CAS  Google Scholar 

  • Chojnacka K (2010) Biosorption and bioaccumulation—the prospects for practical applications. Environ Int 36:299–307

    Article  CAS  Google Scholar 

  • Costerton JW (1999) Introduction to biofilm. Int J Antimicrob Agents 11: 217–221, discussion 237–219

  • Costley SC, Wallis FM (2001) Bioremediation of heavy metals in a synthetic wastewater using a rotating biological contactor. Water Res 35:3715–3723

    Article  CAS  Google Scholar 

  • Crowell AD (1966) Surface forces and solid-gas interface. In: Flood EA (ed) The solid-gas interface. Marcel Dekker, New York

    Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  CAS  Google Scholar 

  • de Siloniz MI, Balsalobre L, Alba C, Valderrama MJ, Peinado JM (2002) Feasibility of copper uptake by the yeast Pichia guilliermondii isolated from sewage sludge. Res Microbiol 153:173–180

    Article  Google Scholar 

  • Deng P, Tan X, Wu Y, Bai Q, Jia Y, Xiao H (2015) Cloning and sequence analysis demonstrate the chromate reduction ability of a novel chromate reductase gene from Serratia sp. Exp Ther Med 9(3):795–800

    CAS  Google Scholar 

  • Dhankhar R, Hooda A (2011) Fungal biosorption—an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol 32:467–491

    Article  CAS  Google Scholar 

  • Díaz-Pérez C, Cervantes C, Campos-García J, Julián-Sánchez A, Riveros-Rosas H (2007) Phylogenetic analysis of the chromate ion transporter (CHR) superfamily. FEBS J 274(23):6215–6227

    Article  CAS  Google Scholar 

  • Donmez G, Aksu Z (2002) Removal of chromium (VI) from saline wastewaters by Dunaliella species. Process Biochem 38:751–762

    Article  CAS  Google Scholar 

  • Donmez G, Kocberber N (2007) Chromium (VI) bioaccumulation capacities of adapted mixed cultures isolated from industrial saline wastewaters. Bioresour Technol 98:2178–2183

    Article  CAS  Google Scholar 

  • Doshi H, Ray A, Kothari IL (2007) Biosorption of cadmium by live and dead Spirulina: IR spectroscopic, kinetics, and SEM studies. Curr Microbiol 54:213–218

    Article  CAS  Google Scholar 

  • Dutton J, Fisher NS (2011) Bioaccumulation of As, Cd, Cr, Hg(II), and MeHg in killifish (Fundulus heteroclitus) from amphipod and worm prey. Sci Total Environ 409:3438–3447

    Article  CAS  Google Scholar 

  • Eswaramoorthy S, Poulain S, Hienerwadel R, Bremond N, Sylvester MD, Zhang YB, Berthomieu C, Lelie DVD, Matin A (2012) Crystal structure of ChrR—a quinone reductase with the capacity to reduce chromate. PLoS ONE 7(4):36017

    Article  CAS  Google Scholar 

  • Flouty R, Estephane G (2012) Bioaccumulation and biosorption of copper and lead by a unicellular algae Chlamydomonas reinhardtii in single and binary metal systems: a comparative study. J Environ Manage 111:106–114

    Article  CAS  Google Scholar 

  • Foucher S, Battaglia-Brunet F, Ignatiadis I, Morin D (2001) Treatment by sulfate-reducing bacteria of chessy acid-mine drainage and metals recovery. Chem Eng Sci 56:1639–1645

    Article  CAS  Google Scholar 

  • Franco L, Maia RCC, Porto ALF, Messias AS, Fukushima K, Campos-Takaki GM (2004) Heavy metal biosorption by chitin and chitosan isolated from Cunninghamella elegans (IFM 46109). Braz J Microbiol 35:243–247

    Article  CAS  Google Scholar 

  • Fuchs S, Haritopoulou T, Schäfer M, Wilhelmi M (1997) Heavy metals in freshwater ecosystems introduced by urban rainwater runoff—monitoring of suspended solids, river sediments and biofilms. Water Sci Technol 36:277–282

    Article  CAS  Google Scholar 

  • Gabr RM, Hassan SHA, Shoreit AAM (2008) Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. Int Biodeter Biodegr 62:195–203

    Article  CAS  Google Scholar 

  • Gadd GM, Griffiths AJ (1978) Microorganisms and heavy metal toxicity. Microb Ecol 4:303–317

    Article  CAS  Google Scholar 

  • Gerbino E, Carasi P, Araujo-Andrade C, Elizabeth Tymczyszyn E, Gomez-Zavaglia A (2015) Role of S-layer proteins in the biosorption capacity of lead by Lactobacillus kefir. World J Microbiol Biotechnol 31:583–592

    Article  CAS  Google Scholar 

  • Goldberg M, Pribyl T, Juhnke S, Nies DH (1999) Energetics and topology of CzcA, a cation/proton antiporter of the resistance-nodulation-cell division protein family. J Biol Chem 274(37):26065–26070

    Article  CAS  Google Scholar 

  • Han X, Wong YS, Tam NFY (2006) Surface complexation mechanism and modeling in Cr(III) biosorption by a microalgal isolate, Chlorella miniata. J Colloid Interf Sci 303:365–371

    Article  CAS  Google Scholar 

  • Han X, Wong YS, Wong MH, Tam NFY (2008) Feasibility of using microalgal biomass cultured in domestic wastewater for the removal of chromium pollutants. Water Environ Res 80(7):647–653

    CAS  Google Scholar 

  • Hassan M, van der Lelie D, Springael D, Römling U, Ahmed N, Mergeay M (1999) Identification of a gene cluster, czr, involved in cadmium and zinc resistance in Pseudomonas aeruginosa. Gene 238(2):417–425

    Article  CAS  Google Scholar 

  • Hassler CS, Slaveykova VI, Wilkinson KJ (2004) Some fundamental (and often overlooked) considerations underlying the free ion activity and biotic ligand model. Environ Toxicol Chem 23:283–291

    Article  CAS  Google Scholar 

  • He M, Li X, Guo L, Miller SJ, Rensing C, Wang G (2010) Characterization and genomic analysis of chromate resistant and reducing Bacillus cereus strain SJ1. BMC Microb 10(1):1

    Article  CAS  Google Scholar 

  • Huang W, Liu Z (2013) Biosorption of Cd(II)/Pb(II) from aqueous solution by biosurfactant-producing bacteria: isotherm kinetic characteristic and mechanism studies. Colloids Surf B 105:113–119

    Article  CAS  Google Scholar 

  • Huang F, Dang Z, Guo CL, Lu GN, Liu HJ, Zhang H (2013) Biosorption of Cd(II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium contaminated soil. Colloids Surf B 107:11–18

    Article  CAS  Google Scholar 

  • Jacinto MLJ, David CPC, Perez TR, De Jesus BR (2009) Comparative efficiency of algal biofilters in the removal of chromium and copper from wastewater. Ecol Eng 35(5):856–860

    Article  Google Scholar 

  • Kadukova J, Vircikova E (2005) Comparison of differences between copper bioaccumulation and biosorption. Environ Int 31:227–232

    Article  CAS  Google Scholar 

  • Kapoor A, Viraraghavan T (1995) Fungal biosorption. An alternative treatment option for heavy metal bearing wastewater: a review. Bioresour Technol 53:195–206

    CAS  Google Scholar 

  • Khosa MA, Wu J, Ullah A (2013) Chemical modification, characterization, and application of chicken feathers as novel biosorbents. RSC Adv 3:20800–20810

    Article  CAS  Google Scholar 

  • Kumar R, Bishnoi NR, Bishnoi K (2008) Biosorption of chromium (VI) from aqueous solution and electroplating wastewater using fungal biomass. Chem Eng J 135(3):202–208

    Article  CAS  Google Scholar 

  • Kwak YH, Lee DS, Kim HB (2003) Vibrio harveyi nitroreductase is also a chromate reductase. Appl Environ Microbiol 69(8):4390–4395

    Article  CAS  Google Scholar 

  • Lanfranco L, Novero M, Bonfante P (2005) The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legume hosts. Plant Physiol 137(4):1319–1330

    Article  CAS  Google Scholar 

  • Li H, Lin Y, Guan W, Chang J, Xu L, Guo J, Wei G (2010) Biosorption of Zn(II) by live and dead cells of Streptomyces ciscaucasicus strain CCNWHX 72-14. J Hazard Mater 179:151–159

    Article  CAS  Google Scholar 

  • Li C, Jiang W, Ma N, Zhu Y, Dong X, Wang D, Meng X, Xu Y (2014) Bioaccumulation of cadmium by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae. Bioresour Technol 155:116–121

    Article  CAS  Google Scholar 

  • Mala JGS, Nair BU, Puvanakrishnan R (2006) Bioaccumulation and biosorption of chromium by Aspergillus niger MTCC 2594. J Gen Appl Microbiol 52:179–186

    Article  CAS  Google Scholar 

  • Martin-Gonzalez A, Díaz S, Borniquel S, Gallego A, Gutierrez JC (2006) Cytotoxicity and bioaccumulation of heavy metals by ciliated protozoa isolated from urban wastewater treatment plants. Res Microbiol 157:108–118

    Article  CAS  Google Scholar 

  • Matheickal JT, Yu Q, Feltham J (1997) Cu(II) binding by E. Radiata biomaterial. Environ Technol 18:25–34

    Article  CAS  Google Scholar 

  • Matsunaga T, Takeyama H, Nakao T, Yamazawa A (1999) Screening of marine microalgae for bioremediation of cadmium-polluted seawater. J Biotechnol 70(1):33–38

    Article  CAS  Google Scholar 

  • Mills SD, Jasalavich CA, Cooksey DA (1993) A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae. J Bacteriol 175(6):1656–1664

    CAS  Google Scholar 

  • Misra TK (1992) Bacterial resistances to inorganic mercury salts and organomercurials. Plasmid 27:4–16

    Article  CAS  Google Scholar 

  • Morais PV, Branco R, Francisco R (2011) Chromium resistance strategies and toxicity: what makes Ochrobactrum tritici 5bvl1 a strain highly resistant. Biometals 24(3):401–410

    Article  CAS  Google Scholar 

  • Morokutti A, Lyskowski A, Sollner S, Pointner E, Fitzpatrick TB, Kratky C, Gruber K, Macheroux P (2005) Structure and function of YcnD from Bacillus subtilis, a flavin-containing oxidoreductase. Biochemistry 44(42):13724–13733

    Article  CAS  Google Scholar 

  • Murugesan AG, Maheswari S, Bagirath G (2008) Biosorption of cadmium by live and immobilized cells of Spirulina platensis. Int J Environ Res 2(3):307–312

    CAS  Google Scholar 

  • Naik MM, Pandey A, Dubey SK (2012) Pseudomonas aeruginosa strain WI-1 from Mandovi estuary possesses metallothionein to alleviate lead toxicity and promotes plant growth. Ecotoxicol Environ Safe 79:129–133

    Article  CAS  Google Scholar 

  • Nepple BB, Kessi J, Bachofen R (2000) Chromate reduction by Rhodobacter sphaeroides. J Ind Microbiol Biotechnol 25(4):198–203

    Article  CAS  Google Scholar 

  • Nies DH (1995) The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J Bacteriol 177(10):2707–2712

    CAS  Google Scholar 

  • Nucifora G, Chu L, Misra TK, Silver S (1989) Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc Natl Acad Sci 86(10):3544–3548

    Article  CAS  Google Scholar 

  • O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99(15):6709–6724

    Article  CAS  Google Scholar 

  • Odermatt A, Suter H, Krapf R, Solioz M (1993) Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J Biol Chem 268(17):12775–12779

    CAS  Google Scholar 

  • Onyancha D, Mavura W, Ngila JC, Ongoma P, Chacha J (2008) Studies of chromium removal from tannery wastewaters by algae biosorbents, Spirogyra condensata and Rhizoclonium hieroglyphicum. J Hazard Mater 158(2):605–614

    Article  CAS  Google Scholar 

  • Ozer A, Ozer D (2003) Comparative study of biosorption of Pb(II), Ni (II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. J Hazard Mater 100:219–229

    Article  CAS  Google Scholar 

  • Park CH, Keyhan M, Wielinga B, Fendorf S, Matin A (2000) Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol 66(5):1788–1795

    Article  CAS  Google Scholar 

  • Park D, Yun YS, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioprocess Eng 15(1):86–102

    Article  CAS  Google Scholar 

  • Prosser GA, Copp JN, Syddall SP, Williams EM, Smaill JB, Wilson WR, Patterson AV, Ackerley DF (2010) Discovery and evaluation of Escherichia coli nitroreductases that activate the anti-cancer prodrug CB1954. Biochem Pharmacol 79(5):678–687

    Article  CAS  Google Scholar 

  • Ramesh G, Podila GK, Gay G, Marmeisse R, Reddy MS (2009) Different patterns of regulation for the copper and cadmium metallothioneins of the ectomycorrhizal fungus Hebeloma cylindrosporum. Appl Environ Microbiol 75(8):2266–2274

    Article  CAS  Google Scholar 

  • Rao MA, Scelza R, Scotti R, Gianfreda L (2010) Role of enzymes in the remediation of polluted environments. J Soil Sc Plant Nutr 10(3):333–353

    Google Scholar 

  • Remacle J (1990) The cell wall and metal binding. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 83–92

    Google Scholar 

  • Robins KJ, Hooks DO, Rehm BH, Ackerley DF (2013) Escherichia coli NemA is an efficient chromate reductase that can be biologically immobilized to provide a cell free system for remediation of hexavalent chromium. PLoS ONE 8(3):59200

    Article  CAS  Google Scholar 

  • Saito K, Thiele DJ, Davio M, Lockridge O, Massey V (1991) The cloning and expression of a gene encoding Old Yellow Enzyme from Saccharomyces carlsbergensis. J Biol Chem 266(31):20720–20724

    CAS  Google Scholar 

  • Schirawski J, Hagens W, Fitzgerald GF, van Sinderen D (2002) Molecular characterization of cadmium resistance in Streptococcus thermophilus strain 4134: an example of lateral gene transfer. Appl Environ Microbiol 68(11):5508–5516

    Article  CAS  Google Scholar 

  • Singh A, Mehta SK, Gaur JP (2007) Removal of heavy metals from aqueous solution by common freshwater filamentous algae. World J Microbiol Biotechnol 23(8):1115–1120

    Article  CAS  Google Scholar 

  • Srinath T, Verma T, Ramteke PW, Garg SK (2002) Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48:427–435

    Article  CAS  Google Scholar 

  • Suh JH, Yun JW, Kim DS (1998) Comparison of Pb2+ accumulation characteristics between live and dead cells of Saccharomyces cerevisiae and Aureobasidium pullulans. Biotechnol Lett 20(3):247–251

    Article  CAS  Google Scholar 

  • Tan WS, Ting ASY (2014) Kinetic and equilibrium modelling on copper (II) removal by live and dead cells of Trichoderma asperellum and the impact of pre-treatments on biosorption. Sep Sci Technol 49:2025–2030

    Article  CAS  Google Scholar 

  • Tangaromsuk J, Plkethitiyook P, Kruatrachue M, Upatham ES (2002) Cadmium biosorption by Sphingomonas paucimobilis biomass. Bioresour Technol 85(1):103–105

    Article  CAS  Google Scholar 

  • Tien CJ, Sigee DC, White KN (2005) Copper adsorption kinetics of cultured algal cells and freshwater phytoplankton with emphasis on cell surface characteristics. J App Phycol 17(5):379–389

    Article  CAS  Google Scholar 

  • Ting ASY, Choong CC (2009) Bioaccumulation and biosorption efficacy of Trichoderma isolate SP2F1 in removing copper (Cu(II)) from aqueous solutions. World J Microbiol Biotechnol 25:1431–1437

    Article  CAS  Google Scholar 

  • Tsai KJ, Yoon KP, Lynn AR (1992) ATP-dependent cadmium transport by the cadA cadmium resistance determinant in everted membrane vesicles of Bacillus subtilis. J Bacterial 174(1):116–121

    CAS  Google Scholar 

  • Valls M, De Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26:327–338

    Article  CAS  Google Scholar 

  • Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316

    Article  CAS  Google Scholar 

  • Velasquez L, Dussan J (2009) Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J Hazard Mater 167(1–3):713–716

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  Google Scholar 

  • Volesky B (2001) Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59:203–216

    Article  CAS  Google Scholar 

  • Wakatsuki T, Hayakawa S, Hatayama T, Kitamura T, Imahara H (1991) Purification and some properties of copper reductase from cell surface of Debaryomyces hansenii. J Ferment Bioeng 72(3):158–161

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Article  CAS  Google Scholar 

  • Xiong A, Jayaswal RK (1998) Molecular characterization of a chromosomal determinant conferring resistance to Zinc and Cobalt ions in Staphylococcus aureus. J Bacteriol 180(16):4024–4029

    CAS  Google Scholar 

  • Yilmazer P, Saracoglu N (2009) Bioaccumulation and biosorption of copper (II) and chromium (III) from aqueous solutions by Pichia stiptis yeast. J Chem Technol Biot 84:604–610

    Article  CAS  Google Scholar 

  • Zahoor A, Rehman A (2009) Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J Environ Sci 21(6):814–820

    Article  CAS  Google Scholar 

  • Zenno S, Kobori T, Tanokura M, Saigo K (1998) Conversion of NfsA, the major Escherichia coli nitroreductase, to a flavin reductase with an activity similar to that of Frp, a flavin reductase in Vibrio harveyi, by a single amino acid substitution. J Bacteriol 180(2):422–425

    CAS  Google Scholar 

  • Zhao H, Eide D (1996) The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. J Biol Chem 271(38):23203–23210

    Article  CAS  Google Scholar 

  • Zheng Z, Li Y, Zhang X, Liu P, Ren J, Wu G, Zhang Y, Chen Y, Li X (2015) A Bacillus subtilis strain can reduce hexavalent chromium to trivalent and an nfrA gene is involved. Int Biodeterior Biodegrad 97:90–96

    Article  CAS  Google Scholar 

  • Zucconi L, Ripa C, Alianiello F, Onofri S (2003) Lead resistance, sorption and accumulation in a Paelomyces strain. Biol Fert Soils 37:17–22

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank our colleagues of Department of Environmental Science and Engineering, Indian School of Mines, Dhanbad for providing support during preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arti Hansda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansda, A., Kumar, V. & Anshumali A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World J Microbiol Biotechnol 32, 170 (2016). https://doi.org/10.1007/s11274-016-2117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2117-1

Keywords

Navigation