Skip to main content
Log in

Gluconic acid production by gad mutant of Klebsiella pneumoniae

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Klebsiella pneumoniae produces many economically important chemicals. Using glucose as a carbon source, the main metabolic product in K. pneumoniae is 2,3-butanediol. Gluconic acid is an intermediate of the glucose oxidation pathway. In the current study, a metabolic engineering strategy was used to develop a gluconic acid-producing K. pneumoniae strain. Deletion of gad, resulting in loss of gluconate dehydrogenase activity, led to the accumulation of gluconic acid in the culture broth. Gluconic acid accumulation by K. pneumoniae Δgad was an acid-dependent aerobic process, with accumulation observed at pH 5.5 or lower, and at higher levels of oxygen supplementation. Under all other conditions tested, 2,3-butanediol was the main metabolic product of the process. In fed batch fermentation, a final concentration of 422 g/L gluconic acid was produced by K. pneumoniae Δgad, and the conversion ratio of glucose to gluconic acid reached 1 g/g. The K. pneumoniae Δgad described in this study is the first genetically modified strain used for gluconic acid production, and this optimized method for gluconic acid production may have important industrial applications.

Graphical Abstract

Gluconic acid is an intermediate of this glucose oxidation pathway. Deletion of gad, resulting in loss of gluconate dehydrogenase activity, led to the accumulation of gluconic acid in the culture broth. In fed batch fermentation, a final concentration of 422 g/L gluconic acid was produced by the K. pneumoniae Δgad strain, and the conversion ratio of glucose to gluconic acid reached 1 g/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An D, Ye A, Deng W, Zhang Q, Wang Y (2012) Selective conversion of cellobiose and cellulose into gluconic acid in water in the presence of oxygen, catalyzed by polyoxometalate-supported gold nanoparticles. Chem Eur J 18:2938–2947

    Article  CAS  Google Scholar 

  • Anastassiadis S, Rehm H-J (2006) Continuous gluconic acid production by Aureobasidium pullulans with and without biomass retention. Electron J Biotechnol 9:494–504

    Google Scholar 

  • Attwood MM, van Dijken JP, Pronk JT (1991) Glucose metabolism and gluconic acid production by Acetobacter diazotrophicus. J Ferment Bioeng 72:101–105

    Article  CAS  Google Scholar 

  • Baneyx F, Ayling A, Palumbo T, Thomas D, Georgiou G (1991) Optimization of growth conditions for the production of proteolytically-sensitive proteins in the periplasmic space of Escherichia coli. Appl Microbiol Biotechnol 36:14–20

    Article  CAS  Google Scholar 

  • Bin DS, Wang H, Li JX et al (2014) Controllable oxidation of glucose to gluconic acid and glucaric acid using an electrocatalytic reactor. Electrochim Acta 130:170–178

    Article  CAS  Google Scholar 

  • Bouvet OMM, Lenormand P, Grimont PAD (1989) Taxonomic diversity of the d-glucose oxidation pathway in the Enterobacteriaceae. Int J Syst Bacteriol 39:61–67

    Article  CAS  Google Scholar 

  • Chen C, Wei D, Shi J, Wang M, Hao J (2014) Mechanism of 2, 3-butanediol stereoisomer formation in Klebsiella pneumoniae. Appl Microbiol Biotechnol 98:4603–4613

    Article  CAS  Google Scholar 

  • Crognale S, Petruccioli M, Fenice M, Federici F (2008) Fed-batch gluconic acid production from Penicillium variabile P16 under different feeding strategies. Enzyme Microb Technol 42:445–449

    Article  CAS  Google Scholar 

  • Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci 100:1541–1546

    Article  CAS  Google Scholar 

  • Hao J, Lin R, Zheng Z, Liu H, Liu D (2008) Isolation and characterization of microorganisms able to produce 1,3-propanediol under aerobic conditions. World J Microbiol Biotechnol 24:1731–1740

    Article  CAS  Google Scholar 

  • Kumar C, Yadav K, Archana G, Kumar GN (2013) 2-Ketogluconic acid secretion by incorporation of Pseudomonas putida KT 2440 gluconate dehydrogenase (gad) operon in Enterobacter asburiae PSI3 improves mineral phosphate solubilization. Curr Microbiol 67:388–394

    Article  CAS  Google Scholar 

  • Neijssel O, Tempest D (1975) Production of gluconic acid and 2-ketogluconic acid by Klebsiella aerogenes NCTC 418. Arch Microbiol 105:183–185

    Article  CAS  Google Scholar 

  • Ramachandran S, Fontanille P, Pandey A, Larroche C (2006) Gluconic acid: properties, applications and microbial production. Food Technol Biotechnol 44:185–195

    CAS  Google Scholar 

  • Ramos ML, Caldeira MM, Gil VM (1997) NMR spectroscopy study of the complexation of d-gluconic acid with tungsten (VI) and molybdenum (VI). Carbohydr Res 304:97–109

    Article  CAS  Google Scholar 

  • Rinsant D, Chatel G, Jerome F (2014) Efficient and selective oxidation of d-glucose into gluconic acid under low-frequency ultrasonic irradiation. ChemCatChem 6:3355–3359

    Article  CAS  Google Scholar 

  • Sankpal N, Kulkarni B (2002) Optimization of fermentation conditions for gluconic acid production using Aspergillus niger immobilized on cellulose microfibrils. Process Biochem 37:1343–1350

    Article  CAS  Google Scholar 

  • Seiskari P, Linko Y-Y, Linko P (1985) Continuous production of gluconic acid by immobilized Gluconobacter oxydans cell bioreactor. Appl Microbiol Biotechnol 21:356–360

    Article  CAS  Google Scholar 

  • Sharma N, Parshad R, Qazi G (1992) Electron transport system associated with direct glucose oxidation in Gluconobacter oxydans. Biotechnol Lett 14:391–396

    Article  CAS  Google Scholar 

  • Singh OV, Kumar R (2007) Biotechnological production of gluconic acid: future implications. Appl Microbiol Biotechnol 75:713–722

    Article  CAS  Google Scholar 

  • Sun YH, Shi JP, Han ZS (2014) Two-stage fermentation for 2-ketogluconic acid production by Klebsiella pneumoniae. J Microbiol Biotechnol 24:781–787

    Article  CAS  Google Scholar 

  • Tlemçani LL, Corroler D, Barillier D, Mosrati R (2008) Physiological states and energetic adaptation during growth of Pseudomonas putida mt-2 on glucose. Arch Microbiol 190:141–150

    Article  Google Scholar 

  • Tomotani EJ, Vitolo M (2007) Immobilized glucose oxidase as a catalyst to the conversion of glucose into gluconic acid using a membrane reactor. Enzyme Microb Technol 40:1020–1025

    Article  CAS  Google Scholar 

  • Wang D, Zhou J, Chen C et al (2015) R-acetoin accumulation and dissimilation in Klebsiella pneumoniae. J Ind Microbiol Biotechnol 42:1105–1115

    Article  CAS  Google Scholar 

  • Wei D, Wang M, Shi J, Hao J (2012) Red recombinase assisted gene replacement in Klebsiella pneumoniae. J Ind Microbiol Biotechnol 39:1219–1226

    Article  CAS  Google Scholar 

  • Wei D, Xu J, Sun J, Shi J, Hao J (2013) 2-Ketogluconic acid production by Klebsiella pneumoniae CGMCC 1.6366. J Ind Microbiol Biotechnol 40:561–570

    Article  CAS  Google Scholar 

  • Wei D, Wang M, Jiang B, Shi J, Hao J (2014) Role of dihydroxyacetone kinases I and II in the dha regulon of Klebsiella pneumoniae. J Biotechnol 177:13–19

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from the KRIBB Research Initiative Program (KGM2211531) and National Natural Science Foundation of China (Grant Nos. 20906076, 21576279).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zengsheng Han or Jian Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Wang, C., Wei, D. et al. Gluconic acid production by gad mutant of Klebsiella pneumoniae . World J Microbiol Biotechnol 32, 132 (2016). https://doi.org/10.1007/s11274-016-2080-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2080-x

Keywords

Navigation